Lindstrom Megan, Minja Neema W, Stark Benjamin, Johnson Catherine O, Razo Christian, DeCleene Nicole, LeGrand Kate E, Mensah George, Watkins David, Roth Gregory A
Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
Department of Global Health, University of Washington, Seattle, WA, USA.
BMC Glob Public Health. 2025 Jul 14;3(1):62. doi: 10.1186/s44263-025-00179-1.
Rheumatic heart disease (RHD) disproportionally affects young populations in socio-economically disadvantaged settings, resulting in a skewed distribution towards low- and middle-income countries. There is currently no consistent global surveillance system to identify countries with a high risk of RHD, which is a major barrier to addressing this public health threat. This paper describes a new methodology for conceptualizing locations at risk for high RHD morbidity and mortality, or burden, globally.
We utilized a set of covariates produced by the Global Burden of Disease Study from 1990 to 2021 via principal component analysis to create the rheumatic heart disease endemicity index (RHDEI). We then demonstrate how the RHDEI could be used in forecasting for targeted policy change with the use of an ensemble time-series forecasting model, creating 20 years of estimates through 2041. The results were evaluated via out-of-sample forecasting to estimate model performance and compared to a naive model to assess goodness of fit.
We produced 203 country-level yearly estimates from 1990 to 2021 for the RHDEI. We found that countries in sub-Saharan Africa and South-East Asia had the highest RHDEI results, reflecting the burden in those regions. The largest decrease in RHDEI was estimated for South Sudan, and the largest increase was estimated for Angola. Our forecast through 2041 further highlighted the heterogeneity of RHD burden, demonstrating how without intervention some regions will likely see worse outcomes in relation to RHD.
The RHDEI provides a much-needed method for capturing global RHD distributions that can improve our understanding of the changing patterns in a data scarce landscape. The evidence the index provides can help researchers, policy makers, and clinicians better understand RHD burden and act to reduce it.
风湿性心脏病(RHD)对社会经济条件不利地区的年轻人群影响尤为严重,导致其在低收入和中等收入国家的分布不均衡。目前尚无统一的全球监测系统来识别风湿性心脏病高风险国家,这是应对这一公共卫生威胁的主要障碍。本文描述了一种新方法,用于在全球范围内概念化风湿性心脏病高发病率、高死亡率或高负担的风险地区。
我们利用了1990年至2021年全球疾病负担研究通过主成分分析得出的一组协变量,创建了风湿性心脏病流行指数(RHDEI)。然后,我们展示了如何通过使用集合时间序列预测模型,将RHDEI用于针对性政策变化的预测,生成直至2041年的20年估计值。通过样本外预测评估结果,以估计模型性能,并与简单模型进行比较以评估拟合优度。
我们得出了1990年至2021年期间203个国家层面的RHDEI年度估计值。我们发现,撒哈拉以南非洲和东南亚国家的RHDEI结果最高,反映了这些地区的负担情况。RHDEI下降幅度最大的是南苏丹,上升幅度最大的是安哥拉。我们对2041年的预测进一步凸显了风湿性心脏病负担的异质性,表明如果不进行干预,一些地区的风湿性心脏病情况可能会恶化。
RHDEI提供了一种急需的方法来捕捉全球风湿性心脏病分布情况,有助于我们在数据稀缺的情况下更好地理解其变化模式。该指数提供的证据可帮助研究人员、政策制定者和临床医生更好地了解风湿性心脏病负担并采取行动减轻负担。