Suppr超能文献

使用金纳米探针以及结合质谱流式细胞术和单颗粒电感耦合等离子体质谱法在不同癌细胞模型中靶向细胞内miRNA

Targeting Intracellular miRNA in Different Cancer Cell Models Using Gold Nanoprobes and Combined Mass Cytometry and Single Particle ICP-MS.

作者信息

González-Morales Sara, Schlautmann Lena, Díez Paula, Bettmer Jörg, Corte-Rodríguez Mario, Montes-Bayón Maria

机构信息

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.

Health Research Institute of the Principality of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011 Oviedo, Spain.

出版信息

Nano Lett. 2025 Jul 23;25(29):11492-11498. doi: 10.1021/acs.nanolett.5c02886. Epub 2025 Jul 15.

Abstract

DNA-conjugated gold nanoparticles (AuNPs) were developed to target intracellular miRNA-16-5p across various cancer cell models by base pair complementarity. The Au-nanoprobe uptake was addressed by multiparametric mass cytometry (CyTOF) monitoring iridium and gold, enabling discrimination among Au nanoprobes in intact cells and cellular debris. Our findings reveal significantly higher incorporation in lung cancer (A549) and melanoma (A375) cells compared to hepatic (HepG2) and ovarian (A2780) models with particle numbers ranging from 200 to 1 AuNPs per cell, respectively. The internalized Au nanoprobes targeting miR-16-5p were captured by mixing the lysed cells with a half-complementary DNA probe immobilized on streptavidin-coated magnetic microparticles. By counting the Au events in the captured solution is possible to quantitatively assess the concentration of miR-16-5p on each cell line. Together, these two complementary MS-based strategies establish a platform for the quantitative evaluation of nanocarrier-mediated miRNA targeting, offering new avenues for the development of miRNA-based cancer therapeutics.

摘要

通过碱基对互补性,开发了DNA共轭金纳米颗粒(AuNPs),以靶向各种癌细胞模型中的细胞内miRNA-16-5p。通过多参数质谱流式细胞术(CyTOF)监测铱和金来研究Au纳米探针的摄取情况,从而能够区分完整细胞和细胞碎片中的Au纳米探针。我们的研究结果显示,与肝癌(HepG2)和卵巢癌(A2780)模型相比,肺癌(A549)和黑色素瘤(A375)细胞中的掺入量显著更高,每个细胞中的颗粒数量分别为200至1个AuNP。通过将裂解的细胞与固定在链霉亲和素包被的磁性微颗粒上的半互补DNA探针混合,捕获靶向miR-16-5p的内化Au纳米探针。通过计算捕获溶液中的Au事件,可以定量评估每个细胞系上miR-16-5p的浓度。总之,这两种基于质谱的互补策略建立了一个用于定量评估纳米载体介导的miRNA靶向的平台,为基于miRNA的癌症治疗方法的开发提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ad0/12291581/d4bdb859aaf5/nl5c02886_0001.jpg

相似文献

1
Targeting Intracellular miRNA in Different Cancer Cell Models Using Gold Nanoprobes and Combined Mass Cytometry and Single Particle ICP-MS.
Nano Lett. 2025 Jul 23;25(29):11492-11498. doi: 10.1021/acs.nanolett.5c02886. Epub 2025 Jul 15.
2
Exploring the Mechanism of Acupuncture in Improving Ovarian Function in Rats with Poor Ovarian Response Using High-Throughput Sequencing.
Comb Chem High Throughput Screen. 2025;28(8):1443-1457. doi: 10.2174/0113862073365843241223093834.
3
Transmucosal Delivery of miR-30c-5p by Chitosan Nanoparticles for Oral Squamous Cell Carcinoma.
Int J Nanomedicine. 2025 Jul 19;20:9179-9194. doi: 10.2147/IJN.S524558. eCollection 2025.
4
Single particle and single cell analysis by ICP-MS with pneumatic nebulisation: Comparing sample introduction systems.
Talanta. 2025 Dec 1;295:128372. doi: 10.1016/j.talanta.2025.128372. Epub 2025 May 22.
6
Identification of miRNA signature in cancer-associated fibroblast to predict recurrent prostate cancer.
Comput Biol Med. 2024 Sep;180:108989. doi: 10.1016/j.compbiomed.2024.108989. Epub 2024 Aug 13.
7
[Influence and mechanism of extracellular vesicles derived from human dermal papilla cells on skin fibrosis in mice].
Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2025 Jun 20;41(6):559-568. doi: 10.3760/cma.j.cn501225-20240925-00348.
9
MiR-99a Enhances the Radiation Sensitivity of Non-Small Cell Lung Cancer by Targeting mTOR.
Cell Physiol Biochem. 2018;46(2):471-481. doi: 10.1159/000488615. Epub 2018 Mar 26.

本文引用的文献

3
Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets.
Funct Integr Genomics. 2023 Jan 10;23(1):33. doi: 10.1007/s10142-022-00947-4.
4
Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems.
Biomed Pharmacother. 2023 Jan;157:114065. doi: 10.1016/j.biopha.2022.114065. Epub 2022 Dec 5.
5
Absolute Quantification of Nanoparticle Interactions with Individual Human B Cells by Single Cell Mass Spectrometry.
Nano Lett. 2022 May 25;22(10):4192-4199. doi: 10.1021/acs.nanolett.2c01037. Epub 2022 May 5.
6
Emerging concepts of miRNA therapeutics: from cells to clinic.
Trends Genet. 2022 Jun;38(6):613-626. doi: 10.1016/j.tig.2022.02.006. Epub 2022 Mar 15.
7
Deciphering the roles of miR-16-5p in malignant solid tumors.
Biomed Pharmacother. 2022 Apr;148:112703. doi: 10.1016/j.biopha.2022.112703. Epub 2022 Feb 8.
8
DNA-Conjugated Gold Nanoparticles as High-Mass Probes in Imaging Mass Cytometry.
ACS Appl Bio Mater. 2019 Oct 21;2(10):4316-4323. doi: 10.1021/acsabm.9b00574. Epub 2019 Sep 11.
9
DIANA-miTED: a microRNA tissue expression database.
Nucleic Acids Res. 2022 Jan 7;50(D1):D1055-D1061. doi: 10.1093/nar/gkab733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验