Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States.
PerkinElmer, Waltham, Massachusetts 02451, United States.
Nano Lett. 2022 May 25;22(10):4192-4199. doi: 10.1021/acs.nanolett.2c01037. Epub 2022 May 5.
We report on the absolute quantification of nanoparticle interactions with individual human B cells using quadrupole-based inductively coupled plasma mass spectrometry (ICP-MS). This method enables the quantification of nanoparticle-cell interactions at single nanoparticle and single cell levels. We demonstrate the efficient and accurate detection of individually suspended B cells and found an ∼100-fold higher association of colloidally stable positively charged nanoparticles with single B cells than neutrally charged nanoparticles. We confirmed that these nanoparticles were internalized by individual B cells and determined that the internalization occurred via energy-dependent pathways consistent with endocytosis. Using dual analyte ICP-MS, we determined that >80% of single B cells were positive for nanoparticles. Our study demonstrates an ICP-MS workflow for the absolute quantification of nanoparticle-cell interactions with single cell and single nanoparticle resolution. This unique workflow could inform the rational design of various nanomaterials for controlling cellular interactions, including immune cell-nanoparticle interactions.
我们报告了使用基于四极杆的电感耦合等离子体质谱(ICP-MS)对纳米颗粒与个体人类 B 细胞相互作用的绝对定量。该方法能够在单个纳米颗粒和单个细胞水平上定量纳米颗粒-细胞相互作用。我们证明了有效和准确地检测单独悬浮的 B 细胞,并发现胶体稳定的带正电荷的纳米颗粒与单个 B 细胞的结合比中性纳米颗粒高约 100 倍。我们证实这些纳米颗粒被单个 B 细胞内化,并确定内化是通过与胞吞作用一致的能量依赖途径发生的。使用双分析物 ICP-MS,我们确定>80%的单个 B 细胞对纳米颗粒呈阳性。我们的研究展示了一种 ICP-MS 工作流程,用于以单细胞和单纳米颗粒分辨率绝对定量纳米颗粒-细胞相互作用。这种独特的工作流程可以为控制细胞相互作用的各种纳米材料的合理设计提供信息,包括免疫细胞-纳米颗粒相互作用。