Sundaram Manoj Kumar, Balavigneswaran Chelladurai Karthikeyan, Saravanakumar Iniyan, Jayaraman Guhan, Muthuvijayan Vignesh
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India.
J Mater Chem B. 2025 Aug 6;13(31):9589-9606. doi: 10.1039/d5tb00248f.
Cartilage injury represents a significant clinical challenge, necessitating innovative repair strategies. Self-healing injectable hydrogels are emerging as promising solutions for cartilage regeneration. However, the hydrogel with robust mechanical strength mimicking the natural cartilage and appropriate extracellular matrix production has not yet been achieved. To address this challenge, we have fabricated self-healing injectable hydrogels by combining oxidized alginate (OA) and gelatin (G) with recombinant hyaluronic acid (HA) of varying molecular weights (0.5 MDa, 1.0 MDa, and 2.0 MDa) derived from metabolically engineered . Incorporating HA resulted in improved physicochemical, mechanical, and biological properties. The 1.0 MDa HA-incorporated hydrogel (OAGH) exhibited superior injectability and self-healing efficiency due to the balance between dynamic covalent and non-covalent interactions within the hydrogel network. The OAGH hydrogel's enhanced shear-thinning properties aided in printing the hydrogel into a mesh-like structure using a 3D printer. The OAGH hydrogel showed an ultimate strength of 1.2 MPa, comparable to the natural cartilage. studies confirmed that these hydrogels also fostered cell adhesion, proliferation, and collagen deposition. These results indicate that the balance between dynamic covalent and non-covalent interactions achieved in the OAGH hydrogel will open promising avenues for advancing cartilage regeneration.
软骨损伤是一项重大的临床挑战,需要创新的修复策略。可自我修复的注射型水凝胶正成为软骨再生的有前景的解决方案。然而,尚未实现具有模仿天然软骨的强大机械强度和适当细胞外基质生成能力的水凝胶。为应对这一挑战,我们通过将氧化海藻酸盐(OA)和明胶(G)与源自代谢工程的不同分子量(0.5 MDa、1.0 MDa和2.0 MDa)的重组透明质酸(HA)相结合,制备了可自我修复的注射型水凝胶。加入HA后,水凝胶的物理化学、机械和生物学性能得到了改善。由于水凝胶网络内动态共价和非共价相互作用之间的平衡,掺入1.0 MDa HA的水凝胶(OAGH)表现出卓越的可注射性和自我修复效率。OAGH水凝胶增强的剪切变稀特性有助于使用3D打印机将水凝胶打印成网状结构。OAGH水凝胶的极限强度为1.2 MPa,与天然软骨相当。 研究证实,这些水凝胶还促进了细胞黏附、增殖和胶原蛋白沉积。这些结果表明,OAGH水凝胶中实现的动态共价和非共价相互作用之间的平衡将为推进软骨再生开辟有前景的途径。