Sanhueza-Novoa Pamela, Fernández Marta, Hernández-Fuentes Carolina, Valenzuela Sofía, Hayat Muhammad Qasim, Ricardo Ramírez H, Castillo Rosario Del P
Laboratory of Biospectroscopy and Chemometrics, Biotechnology Center & Faculty of Pharmacy, University of Concepción, Chile.
Laboratory of Forest Genomics, Biotechnology Center & Faculty of Forestry Sciences, University of Concepción, Chile.
Spectrochim Acta A Mol Biomol Spectrosc. 2026 Jan 5;344(Pt 1):126675. doi: 10.1016/j.saa.2025.126675. Epub 2025 Jul 8.
Water deficit stress (WDS) can negatively affect the development, productivity and quality of Eucalyptus spp. To minimize this impact, the development of high throughput techniques for early and accurate WDS detection is necessary. This study focuses in the use of visible-near infrared hyperspectral imaging (VIS-NIR HSI) and chemometric methods to detect water deficit spectral patterns of these species and to develop predictive models for early detection of water deficit level in juvenile plants. The research included the analysis of four Eucalyptus genotypes, two Eucalyptus globulus and two Eucalyptus gloni (hybrid of E. nitens and E. globulus). Forty ramets of each genotype were submitted to WDS conditions associated with different stress levels and compared with control samples using conventional physical characterization and common vegetative indices of plants, besides VIS-NIR HSI. The HSI data were analyzed using principal component analysis (PCA) and supervised pattern recognition methods to classify the samples by WDS level using as validation set the mean spectra of images (bulk prediction) and all the pixels of whole plant (single pixel prediction). The results of PCA showed a differentiated response on the different WDS conditions, especially at day 10 of water deficit. Conventional vegetation indices, such as NDVI, PRI and MCARI, did not detect indications of an early WDS response, while pattern recognition methods including partial least squares (PLS-DA), discriminant support vector machine (SVM-DA) and k-nearest neighbor (KNN) showed a remarkable predictive ability for WDS level with a prediction error (Err) of 2 % in external validation sets. Supervised models were applied also to reconstruct the stress level in all the pixels of whole plants. The superior effectiveness of the SVM-DA and KNN models to predict stress level in images of Eucalyptus spp. provided valuable information on spatial distribution of stress in the plant.
水分亏缺胁迫(WDS)会对桉树的生长发育、生产力和品质产生负面影响。为了将这种影响降至最低,开发用于早期准确检测WDS的高通量技术很有必要。本研究聚焦于利用可见-近红外高光谱成像(VIS-NIR HSI)和化学计量学方法来检测这些树种的水分亏缺光谱模式,并建立预测模型以早期检测幼苗的水分亏缺水平。该研究包括对四种桉树基因型的分析,其中两种是蓝桉,另外两种是巨桉(细叶桉和蓝桉的杂交种)。除了VIS-NIR HSI外,每种基因型的40个分株被置于与不同胁迫水平相关的WDS条件下,并使用传统物理特征和植物常见营养指标与对照样本进行比较。利用主成分分析(PCA)和监督模式识别方法对HSI数据进行分析,以便根据WDS水平对样本进行分类,将图像的平均光谱(整体预测)和整株植物的所有像素(单像素预测)用作验证集。PCA结果表明,在不同的WDS条件下有不同的响应,特别是在水分亏缺第10天时。常规植被指数,如归一化植被指数(NDVI)、光化学反射指数(PRI)和修正的叶绿素吸收反射指数(MCARI),未检测到早期WDS响应的迹象,而包括偏最小二乘法判别分析(PLS-DA)、支持向量机判别分析(SVM-DA)和k近邻(KNN)在内的模式识别方法对WDS水平具有显著的预测能力,外部验证集的预测误差(Err)为2%。监督模型还被用于重建整株植物所有像素中的胁迫水平。SVM-DA和KNN模型在预测桉树物种图像中的胁迫水平方面的卓越有效性,为植物胁迫的空间分布提供了有价值的信息。