Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
Department of Molecular Biotechnology, Environmental Technology, and Food Technology, Ghent University Global Campus, 119, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, South Korea.
Sci Rep. 2023 Mar 14;13(1):4261. doi: 10.1038/s41598-023-31517-8.
Spearmint (Mentha spicata L.) is grown for its essential oil (EO), which find use in food, beverage, fragrance and other industries. The current study explores the ability of near infrared hyperspectral imaging (HSI) (935 to 1720 nm) to predict, in a rapid, nondestructive manner, the essential oil content of dried spearmint (0.2 to 2.6% EO). Spectral values of spearmint samples varied considerably with spatial coordinates, and so the use of averaging the spectral values of a surface scan was warranted. Data preprocessing was done with Multiplicative Scatter Correction (MSC) or Standard Normal Variate (SNV). Selection of spectral input variables was done with Least Absolute Shrinkage and Selection Operator (LASSO), Principal Component Analysis (PCA) or Partial Least Squares (PLS). Regression was executed with linear regression (LASSO, PLS regression, PCA regression), Support Vector Machine (SVM) regression, and Multilayer Perceptron (MLP). The best prediction of EO concentration was achieved with the combination of MSC or SNV preprocessing, PLS dimension reduction, and MLP regression (1 hidden layer with 6 nodes), achieving a good prediction with a ratio of performance to deviation (RPD) of 2.84 ± 0.07, an R of prediction of 0.863 ± 0.008, and a RMSE of prediction of 0.219 ± 0.005% EO. These results show that NIR-HSI is a viable method for rapid, nondestructive analysis of EO concentration. Future work should explore the use of NIR in the visible spectrum, the use of HSI for determining EO in other plant materials and the potential of HSI to determine individual compounds in these solid plant/food matrices.
留兰香(Mentha spicata L.)因其精油(EO)而种植,该精油用于食品、饮料、香料和其他行业。本研究探讨了近红外高光谱成像(HSI)(935 至 1720nm)以快速、非破坏性方式预测干燥留兰香(0.2 至 2.6%EO)中精油含量的能力。留兰香样品的光谱值随空间坐标变化很大,因此有必要对表面扫描的光谱值进行平均。使用乘法散射校正(MSC)或标准正态变量(SNV)进行数据预处理。使用最小绝对值收缩和选择算子(LASSO)、主成分分析(PCA)或偏最小二乘(PLS)选择光谱输入变量。使用线性回归(LASSO、PLS 回归、PCA 回归)、支持向量机(SVM)回归和多层感知器(MLP)执行回归。通过 MSC 或 SNV 预处理、PLS 降维以及 MLP 回归(具有 6 个节点的 1 个隐藏层)的组合实现了最佳的 EO 浓度预测,其性能与偏差比(RPD)为 2.84±0.07,预测 R 为 0.863±0.008,预测 RMSE 为 0.219±0.005%EO。这些结果表明,NIR-HSI 是一种快速、非破坏性分析 EO 浓度的可行方法。未来的工作应探索 NIR 在可见光谱中的应用、HSI 用于确定其他植物材料中的 EO 以及 HSI 用于确定这些固体植物/食品基质中单个化合物的潜力。