文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习模型从随机临床试验的瀑布图预测无进展生存期和总生存期结果(MAP - 结果)

The use of machine learning models to predict progression-free survival and overall survival outcomes from waterfall plots in randomized clinical trials (MAP-OUTCOMES).

作者信息

Alshankati K, Alshibany A, Toma A, Lajkosz K, Haibe-Kains B, Siu L L

机构信息

Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.

Medical Biophysics, University of Toronto, Toronto, Canada; Vector Institute for Artificial Intelligence, Toronto, Canada.

出版信息

ESMO Open. 2025 Jul 14;10(8):105509. doi: 10.1016/j.esmoop.2025.105509.


DOI:10.1016/j.esmoop.2025.105509
PMID:40664145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12281959/
Abstract

BACKGROUND: Depth of tumor response (DepOR) of individual patients, as visualized by waterfall plots, is a short-term endpoint that may represent a surrogate for survival-based outcomes such as progression-free survival (PFS) and overall survival (OS). We hypothesized that PFS/OS could be predicted from waterfall plots in randomized clinical trials (RCTs) using a novel machine-learning (ML) computational model. MATERIALS AND METHODS: A literature-based search was carried out for phase II/III RCTs testing noncytotoxic systemic therapy, which included waterfall plots with corresponding PFS/OS results. Studies were defined as positive or negative based on achievement of an a priori-stated primary endpoint. Trial data and images of waterfall plots were manually extracted and then processed through a semi-automatic extraction process. We developed the MAP-OUTCOMES (MAchine learning model to Predict PFS and OS OUTCOMES) model using regularized logistic regression. This model was applied to a training set comprising 70% of the data, and 30% was used for a test set. RESULTS: A total of 91 unique RCTs were identified, and 82 (93 trial pairs) retained for the ML analysis. Most of the trials were phase III (75%), with 67% using PFS as the primary endpoint and a mean sample size of 350 patients per arm. The most common tumor type was genitourinary (22%), and small-molecule targeted agents (27%) were the most frequent regimen. The model's performance achieved 71% accuracy [95% confidence interval (CI) 0.536-0.862, P = 0.18] with an area under the curve (AUC) of 65% (95% CI 0.333-0.938, P = 0.157) and area under the precision-recall curve (AUPRC) of 90% (95% CI 0.779-0.995, P = 0.171) in the 28 trials used for the test set. CONCLUSIONS: The MAP-OUTCOMES model demonstrated the feasibility of using ML to predict survival-based outcomes from waterfall plots, thus providing a potential tool for early trial evaluation. Improving the model's performance with more training data and creating independent datasets are necessary steps to assess its generalizability for prospective clinical applications.

摘要

背景:通过瀑布图可视化的个体患者肿瘤反应深度(DepOR)是一个短期终点,可能代表无进展生存期(PFS)和总生存期(OS)等基于生存的结局的替代指标。我们假设在随机临床试验(RCT)中,可以使用一种新型机器学习(ML)计算模型从瀑布图预测PFS/OS。 材料与方法:对测试非细胞毒性全身治疗的II/III期RCT进行基于文献的检索,这些研究包括带有相应PFS/OS结果的瀑布图。根据是否达到预先设定的主要终点,将研究定义为阳性或阴性。手动提取试验数据和瀑布图图像,然后通过半自动提取过程进行处理。我们使用正则化逻辑回归开发了MAP - OUTCOMES(预测PFS和OS结局的机器学习模型)模型。该模型应用于包含70%数据的训练集,30%用于测试集。 结果:共识别出91项独特的RCT,82项(93个试验对)保留用于ML分析。大多数试验为III期(75%),67%以PFS作为主要终点,每组平均样本量为350例患者。最常见的肿瘤类型是泌尿生殖系统肿瘤(22%),小分子靶向药物(27%)是最常用的治疗方案。在用于测试集的28项试验中,该模型的性能准确率达到71%[95%置信区间(CI)0.536 - 0.862,P = 0.18],曲线下面积(AUC)为65%(95%CI 0.333 - 0.938,P = 0.157),精确召回率曲线下面积(AUPRC)为90%(95%CI 0.779 - 0.995,P = 0.171)。 结论:MAP - OUTCOMES模型证明了使用ML从瀑布图预测基于生存的结局的可行性,从而为早期试验评估提供了一个潜在工具。使用更多训练数据提高模型性能并创建独立数据集是评估其在前瞻性临床应用中的通用性的必要步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e21/12281959/eb9989bbf265/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e21/12281959/838f89b0ac1f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e21/12281959/959863d5dc58/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e21/12281959/eb9989bbf265/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e21/12281959/838f89b0ac1f/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e21/12281959/959863d5dc58/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e21/12281959/eb9989bbf265/gr3.jpg

相似文献

[1]
The use of machine learning models to predict progression-free survival and overall survival outcomes from waterfall plots in randomized clinical trials (MAP-OUTCOMES).

ESMO Open. 2025-7-14

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[5]
Treatment of newly diagnosed glioblastoma in the elderly: a network meta-analysis.

Cochrane Database Syst Rev. 2020-3-23

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[8]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[9]
Positron emission tomography-adapted therapy for first-line treatment in individuals with Hodgkin lymphoma.

Cochrane Database Syst Rev. 2015-1-9

[10]
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.

Cochrane Database Syst Rev. 2020-10-19

本文引用的文献

[1]
Statistical Interpretation and Comparison of Waterfall Plots.

JCO Clin Cancer Inform. 2023-9

[2]
An overview of artificial intelligence in oncology.

Future Sci OA. 2022-2-10

[3]
Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer.

Nature. 2022-3

[4]
A narrative review: depth of response as a predictor of the long-term outcomes for solid tumors.

Transl Cancer Res. 2021-2

[5]
The role of machine learning in clinical research: transforming the future of evidence generation.

Trials. 2021-8-16

[6]
Tumor Response End Points as Surrogates for Overall Survival in Immune Checkpoint Inhibitor Trials: A Systematic Review and Meta-Analysis.

JCO Precis Oncol. 2021-7

[7]
The case for AI-driven cancer clinical trials - The efficacy arm in silico.

Biochim Biophys Acta Rev Cancer. 2021-8

[8]
Transparency and reproducibility in artificial intelligence.

Nature. 2020-10

[9]
A systematic review of meta-analyses assessing the validity of tumour response endpoints as surrogates for progression-free or overall survival in cancer.

Br J Cancer. 2020-11

[10]
Machine learning model to predict oncologic outcomes for drugs in randomized clinical trials.

Int J Cancer. 2020-11-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索