Suppr超能文献

两自由度大行程执行器中平面外运动抑制结构的设计方法。

Design method for out-of-plane motion rejecting structure in 2-DoF large stroke actuators.

作者信息

Bian Wei, Zhao Xiaoguang, Lu Wenshuai, Yang Yijun, Zhang Junjie, You Rui, Xing Fei

机构信息

Qiyuan Lab, Beijing, 100190, China.

出版信息

Microsyst Nanoeng. 2025 Jul 15;11(1):144. doi: 10.1038/s41378-025-00971-x.

Abstract

This paper addresses a critical challenge in the design of MEMS actuators: the rejection of out-of-plane motion, specifically along the Z-axis, which can severely impact the precision and performance of these micro-actuation systems. In many MEMS applications, unwanted out-of-plane displacement can lead to reduced accuracy in tasks such as optical steering, micro-manipulation, and scanning applications. In response to these limitations, this paper proposes a novel design technique that effectively rejects Z-axis motion by transforming the motion of the micro stage along the Z-axis into equivalent displacements between pairs of points on cantilevers. These point pairs are founded exhibiting variable common-mode and differential-mode motion characteristics, depending on whether the stage is undergoing in-plane (X/Y) or out-of-plane (Z) displacements. By connecting these point pairs with rods, differential motion between the points in the pairs is suppressed, reducing unwanted out-of-plane motion significantly. We provide a detailed analysis of this design methodology and present a practical application in the form of an electromagnetic large displacement MEMS actuator. This actuator undergoes a complete design-simulation-manufacturing-testing cycle, where the effectiveness of the Z-axis motion rejection structure is systematically evaluated, and compared against traditional designs. Experimental results reveal a significant improvement in performance, with static and dynamic travel ranges reaching ±60 μm and ±400 μm, respectively. Moreover, the Z-axis stiffness was enhanced by 68.5%, which is more than five times the improvement observed in the X/Y axes' stiffness. These results highlight the potential of the proposed method to provide a robust solution for out-of-plane motion suppression in MEMS actuators, offering improved performance without compromising other critical parameters such as displacement and actuation speed.

摘要

本文探讨了MEMS致动器设计中的一个关键挑战:抑制平面外运动,特别是沿Z轴的运动,这可能会严重影响这些微驱动系统的精度和性能。在许多MEMS应用中,不需要的平面外位移会导致诸如光学转向、微操纵和扫描应用等任务的精度降低。针对这些限制,本文提出了一种新颖的设计技术,通过将微平台沿Z轴的运动转换为悬臂梁上各点对之间的等效位移,有效地抑制Z轴运动。根据平台是在平面内(X/Y)还是平面外(Z)位移,发现这些点对具有可变的共模和差模运动特性。通过用杆连接这些点对,抑制了点对中各点之间的差动,显著减少了不需要的平面外运动。我们对这种设计方法进行了详细分析,并以电磁大位移MEMS致动器的形式给出了一个实际应用。该致动器经历了一个完整的设计-模拟-制造-测试周期,在这个周期中,系统地评估了Z轴运动抑制结构的有效性,并与传统设计进行了比较。实验结果表明性能有了显著提高,静态和动态行程范围分别达到±60μm和±400μm。此外,Z轴刚度提高了68.5%,这是X/Y轴刚度提高幅度的五倍多。这些结果突出了所提出方法在抑制MEMS致动器平面外运动方面提供强大解决方案的潜力,在不影响位移和驱动速度等其他关键参数的情况下提高了性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/149a/12264151/c3e9adf3618b/41378_2025_971_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验