Suppr超能文献

一种用于检测 MRI 扫描中颈椎脊髓压迫的深度学习模型。

A deep learning model for detection of cervical spinal cord compression in MRI scans.

机构信息

Division of Neurosurgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada.

Division of Neurosurgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.

出版信息

Sci Rep. 2021 May 18;11(1):10473. doi: 10.1038/s41598-021-89848-3.

Abstract

Magnetic Resonance Imaging (MRI) evidence of spinal cord compression plays a central role in the diagnosis of degenerative cervical myelopathy (DCM). There is growing recognition that deep learning models may assist in addressing the increasing volume of medical imaging data and provide initial interpretation of images gathered in a primary-care setting. We aimed to develop and validate a deep learning model for detection of cervical spinal cord compression in MRI scans. Patients undergoing surgery for DCM as a part of the AO Spine CSM-NA or CSM-I prospective cohort studies were included in our study. Patients were divided into a training/validation or holdout dataset. Images were labelled by two specialist physicians. We trained a deep convolutional neural network using images from the training/validation dataset and assessed model performance on the holdout dataset. The training/validation cohort included 201 patients with 6588 images and the holdout dataset included 88 patients with 2991 images. On the holdout dataset the deep learning model achieved an overall AUC of 0.94, sensitivity of 0.88, specificity of 0.89, and f1-score of 0.82. This model could improve the efficiency and objectivity of the interpretation of cervical spine MRI scans.

摘要

磁共振成像(MRI)显示脊髓受压在退行性颈椎病(DCM)的诊断中起着核心作用。越来越多的人认识到,深度学习模型可能有助于处理不断增加的医学影像数据,并对初级保健环境中采集的图像进行初步解读。我们旨在开发和验证一种用于检测 MRI 扫描中颈椎脊髓受压的深度学习模型。我们的研究纳入了接受 DCM 手术治疗的患者,这些患者是 AO 脊柱 CSM-NA 或 CSM-I 前瞻性队列研究的一部分。患者被分为训练/验证数据集或保留数据集。由两名专家医生对图像进行标注。我们使用训练/验证数据集的图像对深度卷积神经网络进行训练,并在保留数据集上评估模型性能。训练/验证队列包括 201 名患者,共 6588 张图像,保留数据集包括 88 名患者,共 2991 张图像。在保留数据集上,深度学习模型的总体 AUC 为 0.94,灵敏度为 0.88,特异性为 0.89,f1 得分为 0.82。该模型可以提高颈椎 MRI 扫描解读的效率和客观性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/650c/8131597/e51556943fec/41598_2021_89848_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验