Suppr超能文献

具有隐私感知持续学习的域增量白细胞分类

Domain-incremental white blood cell classification with privacy-aware continual learning.

作者信息

Kumari Pratibha, Bozorgpour Afshin, Reisenbüchler Daniel, Jost Edgar, Crysandt Martina, Matek Christian, Merhof Dorit

机构信息

University of Regensburg, Regensburg, 93053, Germany.

Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany.

出版信息

Sci Rep. 2025 Jul 15;15(1):25468. doi: 10.1038/s41598-025-08024-z.

Abstract

White blood cell (WBC) classification plays a vital role in hematology for diagnosing various medical conditions. However, it faces significant challenges due to domain shifts caused by variations in sample sources (e.g., blood or bone marrow) and differing imaging conditions across hospitals. Traditional deep learning models often suffer from catastrophic forgetting in such dynamic environments, while foundation models, though generally robust, experience performance degradation when the distribution of inference data differs from that of the training data. To address these challenges, we propose a generative replay-based Continual Learning (CL) strategy designed to prevent forgetting in foundation models for WBC classification. Our method employs lightweight generators to mimic past data with a synthetic latent representation to enable privacy-preserving replay. To showcase the effectiveness, we carry out extensive experiments with a total of four datasets with different task ordering and four backbone models including ResNet50, RetCCL, CTransPath, and UNI. Experimental results demonstrate that conventional fine-tuning methods degrade performance on previously learned tasks and struggle with domain shifts. In contrast, our continual learning strategy effectively mitigates catastrophic forgetting, preserving model performance across varying domains. This work presents a practical solution for maintaining reliable WBC classification in real-world clinical settings, where data distributions frequently evolve.

摘要

白细胞(WBC)分类在血液学中对于诊断各种疾病起着至关重要的作用。然而,由于样本来源(如血液或骨髓)的差异以及不同医院成像条件的不同所导致的领域转移,它面临着重大挑战。传统的深度学习模型在这种动态环境中往往会遭受灾难性遗忘,而基础模型虽然通常很强大,但当推理数据的分布与训练数据不同时,其性能会下降。为了应对这些挑战,我们提出了一种基于生成重放的持续学习(CL)策略,旨在防止基础模型在白细胞分类中遗忘。我们的方法采用轻量级生成器,通过合成潜在表示来模拟过去的数据,以实现隐私保护重放。为了展示其有效性,我们使用总共四个具有不同任务顺序的数据集和包括ResNet50、RetCCL、CTransPath和UNI在内的四个骨干模型进行了广泛的实验。实验结果表明,传统的微调方法会降低在先前学习任务上的性能,并且难以应对领域转移。相比之下,我们的持续学习策略有效地减轻了灾难性遗忘,在不同领域中保持了模型性能。这项工作为在数据分布频繁变化的现实临床环境中维持可靠的白细胞分类提供了一个切实可行的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验