Suppr超能文献

不同耕作-作物系统中土壤有机碳的遥感监测

Remote sensing of soil organic carbon in varied tillage-crop systems.

作者信息

Zoller Amy L, Birru Girma, Kharel Tulsi, Jin Virginia L, Schmer Marty R, Freidenreich Ariel, Wardlow Brian, Kettler Tim, Gala Tekleab

机构信息

USDA-ARS Agroecosystem Management Research Unit, Lincoln, Nebraska, USA.

USDA-ARS Crop Production Systems Research Unit, Stoneville, Mississippi, USA.

出版信息

J Environ Qual. 2025 Jul 15. doi: 10.1002/jeq2.70060.

Abstract

The use of remote sensing (RS) to estimate soil organic carbon (SOC) in cropland has become increasingly important to producers, researchers, and policy makers to assess soil and plant health across spatially variable landscapes. Yet, RS estimation of cropland SOC is challenging, particularly when mixed crop residues and soils are present. Our objective was to develop an RS model to estimate SOC under varied tillage-crop systems typical of Corn Belt, US farming practices and evaluate model performance with respect to each system. Four tillage-crop systems were evaluated: conventional till corn (CT-corn) with one tillage event, CT-corn with two tillage events, no-till soybean (NT-soy), and no-till corn (NT-corn). A random forest (RF) model was developed using SOC measurements, Sentinel-2 early spring images (bands and band ratios), and ancillary data (elevation, yield, soils, peak vegetation), and accuracy and most important variables were assessed for each system. The two CT-corn models had similar predictability and accuracy (R= 0.65-0.66, root mean square error [RMSE] = 0.13), while the NT-soy had comparable predictability but lower accuracy (R= 0.69, RMSE = 0.22). The NT-corn model, however, underperformed (R= 0.14, RMSE = 0.29). Sentinel-2 early spring images dominated most important variables for all models except for NT-corn which relied on ancillary inputs. The RF model was also used to map the spatial distribution of SOC, which showed variability related to human disturbance (historical railroad tracks). This research provided insight into estimation and mapping of SOC in varied tillage-crop systems and highlighted the importance of using early spring RS images to improve results in mixed crop residue and soil areas.

摘要

利用遥感(RS)估算农田土壤有机碳(SOC),对于生产者、研究人员和政策制定者评估空间异质景观中的土壤和作物健康状况而言,愈发重要。然而,利用RS估算农田SOC颇具挑战性,尤其是当存在混合作物残茬和土壤时。我们的目标是开发一个RS模型,以估算美国玉米带典型的不同耕作 - 作物系统下的SOC,并评估各系统模型的性能。评估了四种耕作 - 作物系统:一次耕作的传统耕作玉米(CT - 玉米)、两次耕作的CT - 玉米、免耕大豆(NT - 大豆)和免耕玉米(NT - 玉米)。利用SOC测量值、哨兵 - 2早春图像(波段和波段比值)以及辅助数据(海拔、产量、土壤、植被峰值)建立了随机森林(RF)模型,并对每个系统的准确性和最重要变量进行了评估。两种CT - 玉米模型具有相似的可预测性和准确性(R = 0.65 - 0.66,均方根误差[RMSE] = 0.13),而NT - 大豆具有相当的可预测性,但准确性较低(R = 0.69,RMSE = 0.22)。然而,NT - 玉米模型表现不佳(R = 0.14,RMSE = 0.29)。除了依赖辅助输入的NT - 玉米外,哨兵 - 2早春图像主导了所有模型的最重要变量。RF模型还用于绘制SOC的空间分布,其显示出与人为干扰(历史铁路轨道)相关的变异性。这项研究为不同耕作 - 作物系统中SOC的估算和制图提供了见解,并强调了使用早春RS图像以改善混合作物残茬和土壤区域结果的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验