Johari Mridul, Folland Chiara, Saito Yoshihiko, Oud Machteld M, Parmar Jevin M, Töpf Ana, Kurbatov Sergei, Ampleeva Maria, Zakharova Ekaterina Y, Chekmareva Irina A, Shirokova Ksenia S, Atiakshin Dmitrii, Gardeitchik Thatjana, Kamsteeg Erik-Jan, Medici Evita, Kaat Laura Donker, Bruels Christine C, Stafki Seth A, Estrella Elicia A, Littel Hannah R, Kunkel Louis M, Kang Peter B, Osei-Owusu Ikeoluwa, Pais Lynn, O'Leary Melaine, Austin-Tse Christina, O'Donnell-Luria Anne, Mangilog Brian, Radio Francesca Clementina, D'Amico Adele, Ciolfi Andrea, Tartaglia Marco, Perrin Aurélien, Van Goethem Charles, Sole Guilhem, Martin-Négrier Marie-Laure, Cossée Mireille, Genetti Casie A, Valivullah Zaheer M, Milic Vedrana, Kovacevic Gordana, Kosac Ana, Moreno Cristiane A M, Camelo Clara Gontijo, Zanoteli Edmar, Fahey Michael C, Beggs Alan H, Vissing John, Straub Volker, Savarese Marco, Tasca Giorgio, Voermans Nicol, Laing Nigel G, Udd Bjarne, Nishino Ichizo, Ravenscroft Gianina
Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia.
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
medRxiv. 2025 Jun 28:2025.06.26.25330266. doi: 10.1101/2025.06.26.25330266.
Tubulinopathies encompass a wide spectrum of disorders resulting from variants in genes encoding α- and β-tubulins, the key components of microtubules. While previous studies have linked or dominantly inherited missense variants to neurodegenerative phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, hereditary spastic ataxia, and more recently, an isolated report of congenital myopathy, the full phenotypic and genotypic spectrum of -related disorders remains incompletely characterised. In this multi-centre study, we identified 13 novel missense variants in 31 individuals from 19 unrelated families. Remarkably, affected individuals in 17 families presented with a primary axial myopathy without any identified CNS involvement or history of such disease. In the remaining two families, we observed probands with cerebellar ataxia and epilepsy accompanying proximal and axial muscle weakness, establishing the first documented association between variants and multisystem proteinopathy. Our cohort exhibited diverse genotypes and associated inheritance patterns: four families demonstrated autosomal dominant transmission through heterozygous variants in , three probands had homozygous variants, where the biallelic genotype was found to be associated with the disease, and the heterozygous carriers were asymptomatic; five probands carried variants, and nine probands with heterozygous variants were classified as "isolated-sporadic cases" where parental samples were unavailable. Clinical phenotypes ranged from mild to severe myopathy, predominantly affecting the axial and paraspinal muscles. We observed a range of disease onset, from congenital to late adulthood. Creatine kinase levels were also variable, ranging from normal to highly elevated. Cardiac function remained preserved across the cohort. Muscle biopsies revealed a range of pathologies, including myofibre size variation, myofibre atrophy, nemaline bodies, core-like regions, internal nuclei, and endomysial fibrosis. Immunohistochemical staining showed evidence of proteinopathy, with autophagic features and TUBA4A accumulation in patient myofibres. Complementary and investigations suggested that the identified substitutions cause significant protein abnormalities and may differentially impact microtubule dynamics. Our findings establish myo-tubulinopathies as distinct clinical entities, encompassing both primary myopathies and multisystem proteinopathies with muscle involvement. This study broadens the phenotypic and genotypic spectrum of -related disorders beyond autosomal dominant or mechanisms and neurodegenerative presentations. These results underscore the importance of considering variants in the differential diagnosis of axial myopathies and multisystem proteinopathies, regardless of central nervous system (CNS) involvement.
微管蛋白病涵盖了由编码α-和β-微管蛋白(微管的关键组成部分)的基因变异导致的广泛疾病谱。虽然先前的研究已将某些错义变异与神经退行性表型联系起来,这些表型包括肌萎缩侧索硬化症、额颞叶痴呆、遗传性痉挛性共济失调,以及最近一份关于先天性肌病的单独报告,但与微管蛋白相关疾病的完整表型和基因型谱仍未完全明确。在这项多中心研究中,我们在来自19个无亲缘关系家庭的31名个体中鉴定出13个新的错义变异。值得注意的是,17个家庭中的患病个体表现为原发性轴索性肌病,未发现任何中枢神经系统受累或此类疾病的病史。在其余两个家庭中,我们观察到先证者伴有小脑共济失调和癫痫,同时伴有近端和轴索性肌无力,从而确立了微管蛋白变异与多系统蛋白病之间的首个有记录的关联。我们的队列展现出多样的基因型和相关的遗传模式:四个家庭通过微管蛋白基因中的杂合变异表现出常染色体显性遗传;三个先证者具有纯合的微管蛋白变异,其中双等位基因基因型被发现与疾病相关,而杂合携带者无症状;五个先证者携带微管蛋白变异,九个携带杂合微管蛋白变异的先证者被归类为“散发性孤立病例”,因为无法获取其父母的样本。临床表型从轻度到重度肌病不等,主要影响轴索和椎旁肌。我们观察到疾病发病时间范围很广,从先天性到成年晚期。肌酸激酶水平也各不相同,从正常到高度升高。整个队列中心脏功能保持正常。肌肉活检揭示了一系列病理变化,包括肌纤维大小变异、肌纤维萎缩、线状体、核心样区域、内部细胞核和肌内膜纤维化。免疫组织化学染色显示存在蛋白病的证据,患者肌纤维中有自噬特征和TUBA4A积聚。互补的基因和蛋白质研究表明,所鉴定的微管蛋白替代导致显著的蛋白质异常,并可能对微管动力学产生不同影响。我们的研究结果将肌微管蛋白病确立为独特的临床实体,包括原发性肌病和伴有肌肉受累的多系统蛋白病。这项研究拓宽了与微管蛋白相关疾病的表型和基因型谱,超出了常染色体显性或隐性机制以及神经退行性表现的范畴。这些结果强调了在轴索性肌病和多系统蛋白病的鉴别诊断中考虑微管蛋白变异的重要性,无论是否有中枢神经系统受累。