Suppr超能文献

数百万帧的缩放方法:一种用于大规模分子动力学模拟的分层非自适应邻居搜索方法

Scaling -Means for Multi-Million Frames: A Stratified NANI Approach for Large-Scale MD Simulations.

作者信息

Santos Jherome Brylle Woody, Chen Lexin, Miranda-Quintana Ramón Alain

机构信息

Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida, 32611, USA.

出版信息

bioRxiv. 2025 Jun 18:2025.06.15.659780. doi: 10.1101/2025.06.15.659780.

Abstract

We present improved means clustering initialization strategies for molecular dynamics (MD) simulations, implemented as part of the N-ary Natural Initiation (NANI) method. Two new deterministic seeding strategies-strat_all and strat_reduced-extend the original NANI approaches and dramatically reduce the clustering runtime while preserving the quality of clustering results. These methods also preserve NANI's reproducible partitioning of well-separated and compact clusters while avoiding the costly iterative seed selection procedures of previous implementations. Testing on the β-heptapeptide and the HP35 systems shows that these new flavors achieved Calinski-Harabasz (CH) and Davies-Bouldin (DB) scores comparable to the previous NANI variant, indicating that the efficiency gains come with no quality decrease. We also show how this new variant can be used to greatly speed up our previously proposed Hierarchical Extended Linkage Method (HELM). These enhancements extend the reach of NANI to accelerate large-scale MD analysis both in stand-alone -means clustering and as a component of hybrid workflows, and remove a key barrier to routine, scalable, and reproducible exploration of complex conformational ensembles. The improved NANI implementation is accessible through our MDANCE package: https://github.com/mqcomplab/MDANCE.

摘要

我们提出了用于分子动力学(MD)模拟的改进的均值聚类初始化策略,作为N元自然初始化(NANI)方法的一部分来实现。两种新的确定性种子策略——strat_all和strat_reduced——扩展了原始的NANI方法,并在保持聚类结果质量的同时显著减少了聚类运行时间。这些方法还保留了NANI对分离良好且紧凑的聚类的可重现划分,同时避免了先前实现中代价高昂的迭代种子选择过程。在β-七肽和HP35系统上的测试表明,这些新变体获得的卡林斯基-哈拉巴斯(CH)和戴维斯-布尔丁(DB)分数与之前的NANI变体相当,这表明效率的提高并未伴随着质量的下降。我们还展示了这种新变体如何用于大幅加速我们之前提出的层次扩展链接方法(HELM)。这些改进扩展了NANI的应用范围,以加速独立均值聚类以及作为混合工作流程组件的大规模MD分析,并消除了对复杂构象集合进行常规、可扩展和可重现探索的关键障碍。可通过我们的MDANCE软件包访问改进后的NANI实现:https://github.com/mqcomplab/MDANCE

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca6/12262197/96715380fe35/nihpp-2025.06.15.659780v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验