Suppr超能文献

亚微米级单细胞分辨率的空间异构体测序揭示了脑细胞类型中空间异构体变异的新模式。

Spatial isoform sequencing at sub-micrometer single-cell resolution reveals novel patterns of spatial isoform variability in brain cell types.

作者信息

Michielsen Lieke, Prjibelski Andrey, Foord Careen, Hu Wen, Jarroux Julien, Hsu Justine, Tomescu Alexandru, Hajirasouliha Iman, Tilgner Hagen

机构信息

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.

Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.

出版信息

bioRxiv. 2025 Jun 25:2025.06.25.661563. doi: 10.1101/2025.06.25.661563.

Abstract

Spatial long-read technologies are becoming more common but lack nanometer- and therefore often single-cell resolution. This leaves the question unanswered whether spatially variable isoforms represent spatial variability within one cell type or differences in cell-type abundance between different regions. Here, we develop Spl-ISO-Seq2 with 220nm spot size and 500nm resolution, and the accompanying software packages Spl-IsoQuant-2 and Spl-IsoFind and apply it to the adult mouse brain. We compare spatial variability within a fixed cell type by examining (a) differential isoform abundance between known brain regions and (b) spatial isoform patterns that do not align with predefined regions. The former reveals larger numbers of spatial isoform differences, e.g. in oligodendrocytes. For the previously appreciated gene with spatially-variable isoforms , we can now show that this variability exists in excitatory neurons. However, the latter approach reveals patterns that the former cannot conceptually model, e.g., in excitatory neurons. Taken together, our experimental and analytical methods enrich spatial transcriptomics with a so-far elusive isoform view of spatial variation for individual cell types.

摘要

空间长读长技术正变得越来越普遍,但缺乏纳米级分辨率,因此往往无法实现单细胞分辨率。这就留下了一个未解决的问题:空间可变异构体是代表一种细胞类型内的空间变异性,还是不同区域之间细胞类型丰度的差异。在这里,我们开发了光斑尺寸为220nm、分辨率为500nm的Spl-ISO-Seq2以及配套软件包Spl-IsoQuant-2和Spl-IsoFind,并将其应用于成年小鼠大脑。我们通过检查(a)已知脑区之间异构体丰度差异和(b)与预定义区域不匹配的空间异构体模式,来比较固定细胞类型内的空间变异性。前者揭示了大量的空间异构体差异,例如在少突胶质细胞中。对于先前已知的具有空间可变异构体的基因,我们现在可以证明这种变异性存在于兴奋性神经元中。然而,后一种方法揭示了前一种方法在概念上无法建模的模式,例如在兴奋性神经元中。总之,我们的实验和分析方法为空间转录组学增添了一个迄今为止难以捉摸的视角,即针对单个细胞类型的空间变异异构体视图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12262416/92f99451b32f/nihpp-2025.06.25.661563v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验