一种虚拟啮齿动物可预测跨行为的神经活动结构。

A virtual rodent predicts the structure of neural activity across behaviours.

机构信息

Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.

Fauna Robotics, New York, NY, USA.

出版信息

Nature. 2024 Aug;632(8025):594-602. doi: 10.1038/s41586-024-07633-4. Epub 2024 Jun 11.

Abstract

Animals have exquisite control of their bodies, allowing them to perform a diverse range of behaviours. How such control is implemented by the brain, however, remains unclear. Advancing our understanding requires models that can relate principles of control to the structure of neural activity in behaving animals. Here, to facilitate this, we built a 'virtual rodent', in which an artificial neural network actuates a biomechanically realistic model of the rat in a physics simulator. We used deep reinforcement learning to train the virtual agent to imitate the behaviour of freely moving rats, thus allowing us to compare neural activity recorded in real rats to the network activity of a virtual rodent mimicking their behaviour. We found that neural activity in the sensorimotor striatum and motor cortex was better predicted by the virtual rodent's network activity than by any features of the real rat's movements, consistent with both regions implementing inverse dynamics. Furthermore, the network's latent variability predicted the structure of neural variability across behaviours and afforded robustness in a way consistent with the minimal intervention principle of optimal feedback control. These results demonstrate how physical simulation of biomechanically realistic virtual animals can help interpret the structure of neural activity across behaviour and relate it to theoretical principles of motor control.

摘要

动物对自身身体有着精妙的控制能力,使它们能够执行各种各样的行为。然而,大脑是如何实现这种控制的,目前还不清楚。为了深入了解这一点,我们需要建立模型,将控制原理与行为动物的神经活动结构联系起来。在这里,为了促进这一点,我们构建了一个“虚拟啮齿动物”,其中人工神经网络驱动一个物理模拟器中的大鼠的生物力学逼真模型。我们使用深度强化学习来训练虚拟代理模仿自由移动大鼠的行为,从而使我们能够将在真实大鼠中记录的神经活动与模拟其行为的虚拟啮齿动物的网络活动进行比较。我们发现,与真实大鼠运动的任何特征相比,感觉运动纹状体和运动皮层中的神经活动更能被虚拟啮齿动物的网络活动所预测,这与这两个区域都执行逆动力学一致。此外,网络的潜在可变性可以预测跨行为的神经可变性结构,并以与最优反馈控制的最小干预原则一致的方式提供鲁棒性。这些结果表明,生物力学逼真的虚拟动物的物理模拟如何有助于解释跨行为的神经活动结构,并将其与运动控制的理论原理联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索