Motion and Exercise Science, University of Stuttgart, 70569 Stuttgart, Germany.
Human Movement Science, Faculty of Sports Science, Ruhr University Bochum, 44801 Bochum, Germany.
J Exp Biol. 2024 Sep 1;227(17). doi: 10.1242/jeb.247377. Epub 2024 Sep 4.
Stretch-shortening cycles (SSCs) involve muscle lengthening (eccentric contractions) instantly followed by shortening (concentric contractions). This combination enhances force, work and power output compared with pure shortening contractions, which is known as the SSC effect. Recent evidence indicates both cross-bridge (XB)-based and non-XB-based (e.g. titin) structures contribute to this effect. This study analysed force re-development following SSCs and pure shortening contractions to gain further insight into the roles of XB and non-XB structures regarding the SSC effect. Experiments were conducted on rat soleus muscle fibres (n=16) with different SSC velocities (30%, 60% and 85% of maximum shortening velocity) and constant stretch-shortening magnitudes (18% of optimum length). The XB inhibitor blebbistatin was used to distinguish between XB and non-XB contributions to force generation. The results showed SSCs led to significantly greater [mean±s.d. 1.02±0.15 versus 0.68±0.09 (ΔF/Δt); t62=8.61, P<0.001, d=2.79) and faster (75 ms versus 205 ms; t62=-6.37, P<0.001, d=-1.48) force re-development compared with pure shortening contractions in the control treatment. In the blebbistatin treatment, SSCs still resulted in greater [0.11±0.03 versus 0.06±0.01 (ΔF/Δt); t62=8.00, P<0.001, d=2.24) and faster (3010±1631 versus 7916±3230 ms; t62=-8.00, P<0.001, d=-1.92) force re-development compared with pure shortening contractions. These findings deepen our understanding of the SSC effect, underscoring the involvement of non-XB structures such as titin in modulating force production. This modulation is likely to involve complex mechanosensory coupling from stretch to signal transmission during muscle contraction.
伸缩-缩短循环(SSC)涉及肌肉的伸长(离心收缩),紧接着是缩短(向心收缩)。与纯缩短收缩相比,这种组合增强了力、功和功率输出,这被称为 SSC 效应。最近的证据表明,横桥(XB)和非 XB 结构(例如肌联蛋白)都有助于这种效应。本研究分析了 SSCs 和纯缩短收缩后的力恢复,以更深入地了解 XB 和非 XB 结构在 SSC 效应中的作用。实验在大鼠比目鱼肌纤维(n=16)上进行,SSC 速度不同(最大缩短速度的 30%、60%和 85%),伸缩-缩短幅度恒定(最佳长度的 18%)。使用 XB 抑制剂 blebbistatin 来区分 XB 和非 XB 对力生成的贡献。结果表明,SSC 导致显著更大的[平均值±标准差 1.02±0.15 与 0.68±0.09(ΔF/Δt);t62=8.61,P<0.001,d=2.79]和更快的(75ms 与 205ms;t62=-6.37,P<0.001,d=-1.48)力恢复,与对照处理中的纯缩短收缩相比。在 blebbistatin 处理中,SSC 仍然导致更大的[0.11±0.03 与 0.06±0.01(ΔF/Δt);t62=8.00,P<0.001,d=2.24]和更快的(3010±1631 与 7916±3230ms;t62=-8.00,P<0.001,d=-1.92)力恢复,与纯缩短收缩相比。这些发现加深了我们对 SSC 效应的理解,强调了肌联蛋白等非 XB 结构在调节力产生中的作用。这种调节可能涉及肌肉收缩过程中从拉伸到信号传输的复杂机械感觉耦联。