Hill Alexis M, To Kelly, Wilke Claus O
Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA.
bioRxiv. 2025 Jun 16:2025.06.16.659965. doi: 10.1101/2025.06.16.659965.
Synonymous codon usage can influence protein expression, since codons with high numbers of corresponding tRNAs are naturally translated more rapidly than codons with fewer corresponding tRNAs. Although translation efficiency ultimately depends on the concentration of aminoacylated (charged) tRNAs, many theoretical models of translation have ignored tRNA dynamics and treated charged tRNAs as fixed resources. This simplification potentially limits these models from making accurate predictions in situations where charged tRNAs become limiting. Here, we derive a mathematical model of translation with explicit tRNA dynamics and tRNA re-charging, based on a stochastic simulation of this system that was previously applied to investigate codon usage in the context of gene overexpression. We use the mathematical model to systematically explore the relationship between codon usage and the protein expression rate, and find that in the regime where tRNA charging is a limiting reaction, it is always optimal to match codon frequencies to the tRNA pool. Conversely, when tRNA charging is not limiting, using 100% of the preferred codon is optimal for protein production. We also use the tRNA dynamics model to augment a whole-cell simulation of bacteriophage T7. Using this model, we demonstrate that the high expression rate of the T7 major capsid gene causes rare charged tRNAs to become entirely depleted, which explains the sensitivity of the major capsid gene to codon deoptimization.
同义密码子的使用会影响蛋白质表达,因为对应tRNA数量多的密码子自然比对应tRNA数量少的密码子翻译得更快。尽管翻译效率最终取决于氨酰化(带电荷)tRNA的浓度,但许多翻译理论模型都忽略了tRNA动态变化,并将带电荷的tRNA视为固定资源。这种简化可能会限制这些模型在带电荷tRNA成为限制因素的情况下做出准确预测。在此,我们基于此前用于研究基因过表达背景下密码子使用情况的该系统的随机模拟,推导出一个具有明确tRNA动态变化和tRNA再充电过程的翻译数学模型。我们使用该数学模型系统地探索密码子使用与蛋白质表达速率之间的关系,发现在tRNA充电是限制反应的情况下,使密码子频率与tRNA库相匹配始终是最优的。相反,当tRNA充电不是限制因素时,使用100%的偏好密码子对蛋白质生产是最优的。我们还使用tRNA动态模型来增强噬菌体T7的全细胞模拟。利用这个模型,我们证明T7主要衣壳基因的高表达率会导致稀有带电荷tRNA完全耗尽,这解释了主要衣壳基因对密码子去优化的敏感性。