Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA.
Nucleic Acids Res. 2023 Jul 7;51(12):5911-5930. doi: 10.1093/nar/gkad435.
In Escherichia coli, inconsistencies between in vitro tRNA aminoacylation measurements and in vivo protein synthesis demands were postulated almost 40 years ago, but have proven difficult to confirm. Whole-cell modeling can test whether a cell behaves in a physiologically correct manner when parameterized with in vitro measurements by providing a holistic representation of cellular processes in vivo. Here, a mechanistic model of tRNA aminoacylation, codon-based polypeptide elongation, and N-terminal methionine cleavage was incorporated into a developing whole-cell model of E. coli. Subsequent analysis confirmed the insufficiency of aminoacyl-tRNA synthetase kinetic measurements for cellular proteome maintenance, and estimated aminoacyl-tRNA synthetase kcats that were on average 7.6-fold higher. Simulating cell growth with perturbed kcats demonstrated the global impact of these in vitro measurements on cellular phenotypes. For example, an insufficient kcat for HisRS caused protein synthesis to be less robust to the natural variability in aminoacyl-tRNA synthetase expression in single cells. More surprisingly, insufficient ArgRS activity led to catastrophic impacts on arginine biosynthesis due to underexpressed N-acetylglutamate synthase, where translation depends on repeated CGG codons. Overall, the expanded E. coli model deepens understanding of how translation operates in an in vivo context.
早在 40 年前,人们就提出在大肠杆菌中,体外 tRNA 氨酰化测量结果与体内蛋白质合成需求之间存在不一致性,但这一观点很难得到证实。全细胞模型可以通过提供体内细胞过程的整体表示来测试细胞在使用体外测量值进行参数化时是否表现出生理上正确的行为。在这里,将 tRNA 氨酰化、基于密码子的多肽延伸和 N 端甲硫氨酸切割的机理模型纳入到大肠杆菌的正在开发的全细胞模型中。随后的分析证实,氨酰-tRNA 合成酶动力学测量对于细胞蛋白质组的维持是不够的,并估计氨酰-tRNA 合成酶 kcat 平均高出 7.6 倍。模拟具有扰动 kcat 的细胞生长表明这些体外测量值对细胞表型的全局影响。例如,HisRS 的 kcat 不足会导致蛋白质合成对单个细胞中氨酰-tRNA 合成酶表达的自然变化的稳健性降低。更令人惊讶的是,由于表达不足的 N-乙酰谷氨酸合酶,ArgRS 活性不足会导致精氨酸生物合成受到灾难性的影响,其中翻译依赖于重复的 CGG 密码子。总的来说,扩展的大肠杆菌模型加深了对翻译在体内环境中如何运作的理解。