Griffen Ed J, Fearon Daren, McGovern Briana L, Koekemoer Lizbe, Balcomb Blake H, Szommer Tamas, Fate Gwendolyn, Robinson Ralph P, Lefker Bruce A, Duberstein Shirly, Lahav Noa, Braillard Stephanie, Vangeel Laura, Laporte Manon, Charvillon Fabienne Burgat, MacLeod A Kenneth, Wells Andrew, Garner Pauline, Knight Richard, Rees Paul, Simon Anthony, Jochmans Dirk, Neyts Johan, Read Kevin D, Barr Haim, Robinson Matthew, Lee Alpha, London Nir, Chodera John, von Delft Frank, White Kris M, Perry Ben, Sjö Peter, von Delft Annette
MedChemica Consultancy Ltd, Motorworks, Chestergate, Macclesfield, SK11 6GU, UK.
Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK.
bioRxiv. 2025 Jun 17:2025.06.16.660018. doi: 10.1101/2025.06.16.660018.
The 2020 SARS-CoV-2 coronavirus pandemic highlighted the urgent need for novel small molecule antiviral drugs. (S)- DNDI-6510 is a non-covalent SARS-CoV-2 main protease inhibitor developed by the open science collaboration COVID Moonshot. Here, we report on the metabolic and toxicologic optimization of the lead series previously disclosed by the COVID Moonshot Initiative, leading up to the selection of (S)- DNDI-6510 as the preclinical candidate. We describe the thorough profiling of the series, identifying key risks such as formation of genotoxic metabolites and high clearance, which were successfully addressed during lead optimization. In addition, we disclose the and evaluation of (S)- DNDI-6510 in pharmacokinetic and pharmacodynamic models, exploring multiple approaches to ameliorate rodent-specific metabolic clearance, and show that both co-dosing of (S)- DNDI-6510 with an ABT inhibitor and utilizing a metabolically humanized mouse model (8HUM) achieve significant improvements in exposure. Through comparisons of ABT co-dosing and humanized mouse models in efficacy experiments, we demonstrate that continuous exposure over cellular EC is required for SARS-CoV-2 antiviral efficacy in an antiviral model using a mouse-adapted SARS-CoV-2 strain. Finally, (S)- DNDI-6510 was assessed in maximum tolerated dose experiments in two species, demonstrating significant in vivo PXR-linked auto-induction of metabolism, leading to the discontinuation of this compound. In summary, we report the successful effort to overcome series-specific AMES liabilities in a lead development program. Downstream optimization of existing series will require in-depth optimization of rodent-specific liabilities and metabolic induction profile.
2020年的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)大流行凸显了对新型小分子抗病毒药物的迫切需求。(S)-DNDI-6510是由开放科学合作项目“COVID登月计划”开发的一种非共价SARS-CoV-2主要蛋白酶抑制剂。在此,我们报告了“COVID登月计划”先前披露的先导系列的代谢和毒理学优化情况,最终选择(S)-DNDI-6510作为临床前候选药物。我们描述了该系列的全面剖析,识别出关键风险,如遗传毒性代谢物的形成和高清除率,这些风险在先导优化过程中得到了成功解决。此外,我们披露了(S)-DNDI-6510在药代动力学和药效学模型中的评估情况,探索了多种改善啮齿动物特异性代谢清除的方法,并表明(S)-DNDI-6510与ABT抑制剂联合给药以及使用代谢人源化小鼠模型(8HUM)均能显著提高药物暴露量。通过在疗效实验中比较ABT联合给药和人源化小鼠模型,我们证明在使用小鼠适应的SARS-CoV-2毒株的抗病毒模型中,SARS-CoV-2抗病毒疗效需要在细胞半数有效浓度(EC)之上持续暴露。最后,在两个物种的最大耐受剂量实验中对(S)-DNDI-6510进行了评估,结果表明存在显著的体内孕烷X受体(PXR)相关的代谢自诱导现象,导致该化合物被停用。总之,我们报告了在先导药物开发项目中成功克服系列特异性AMES反应的工作。现有系列的下游优化将需要深入优化啮齿动物特异性反应和代谢诱导情况。