Suppr超能文献

利用人工智能进行移动应用程序原型设计以支持儿童结核病诊断。

Mobile application prototyping using Artificial Intelligence to support childhood tuberculosis diagnosis.

作者信息

Picoli Katerine Souza, Ramos Flávia Regina Souza, Silva Denise Maria Guerreiro Vieira da, Thurner Bruno da Veiga, Sacramento Daniel Souza, Antunes Irineide Assumpção, Andrade Lucas Lorran Costa de, Sicsú Amélia Nunes

机构信息

Universidade do Estado do Amazonas. Manaus, Amazonas, Brazil.

Universidade Federal de Santa Catarina. Florianópolis, Santa Catarina, Brazil.

出版信息

Rev Bras Enferm. 2025 Jul 11;78(3):e20240398. doi: 10.1590/0034-7167-2024-0398. eCollection 2025.

Abstract

OBJECTIVES

to develop a mobile application prototype using Artificial Intelligence (AI) to predict and support the diagnosis of pulmonary tuberculosis in children - TB Kids.

METHODS

technological development research of the prototyping type, based on the Rational Unified Process model and its four stages: conception, elaboration, construction and transition. The development of the TB Kids prototype took place from November 2022 to July 2023.

RESULTS

the TB Kids prototype has features for risk assessment, nutritional assessment, tuberculin skin test, investigation of antibiotic therapy and contacts, interpretation of chest X-rays through AI with risk graph and decision-making, complementary guidance and recording of the clinical picture.

CONCLUSIONS

the high-fidelity mobile application prototype has a consistent interface, responding with creativity and innovation to Sustainable Development Goal 3 and the lack of prediction software using AI in the diagnosis of children at risk for tuberculosis.

摘要

目标

开发一款使用人工智能(AI)的移动应用程序原型,以预测和支持儿童肺结核的诊断——儿童结核病(TB Kids)。

方法

基于理性统一过程模型及其四个阶段(构想、细化、构建和过渡)进行原型类型的技术开发研究。儿童结核病(TB Kids)原型的开发于2022年11月至2023年7月进行。

结果

儿童结核病(TB Kids)原型具有风险评估、营养评估、结核菌素皮肤试验、抗生素治疗及接触者调查、通过带有风险图和决策功能的人工智能解读胸部X光片、补充指导以及记录临床情况等功能。

结论

该高保真移动应用程序原型具有一致的界面,以创造性和创新性回应了可持续发展目标3,以及在诊断有患结核病风险的儿童方面缺乏使用人工智能的预测软件的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed48/12419783/a91496a17af7/0034-7167-reben-78-03-e20240398-gf01.jpg

相似文献

1
Mobile application prototyping using Artificial Intelligence to support childhood tuberculosis diagnosis.
Rev Bras Enferm. 2025 Jul 11;78(3):e20240398. doi: 10.1590/0034-7167-2024-0398. eCollection 2025.
2
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.
J Med Internet Res. 2025 Jun 23;27:e72398. doi: 10.2196/72398.
3
A systematic review and meta-analysis of artificial intelligence software for tuberculosis diagnosis using chest X-ray imaging.
J Thorac Dis. 2025 May 30;17(5):3223-3237. doi: 10.21037/jtd-2025-604. Epub 2025 May 27.
4
Lung and abdominal ultrasound accuracy for tuberculosis: An Indian prospective cohort study.
PLoS One. 2025 Sep 3;20(9):e0329670. doi: 10.1371/journal.pone.0329670. eCollection 2025.
5
Low-complexity manual nucleic acid amplification tests for pulmonary tuberculosis in children.
Cochrane Database Syst Rev. 2025 Jun 25;6(6):CD015806. doi: 10.1002/14651858.CD015806.pub2.
6
A Framework for Two-class Classification of Pulmonary Tuberculosis using Artificial Intelligence.
Curr Med Imaging. 2025;21:e15734056343819. doi: 10.2174/0115734056343819250307040956.
8
Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV-positive adults.
Cochrane Database Syst Rev. 2016 May 10;2016(5):CD011420. doi: 10.1002/14651858.CD011420.pub2.

本文引用的文献

2
Continuous usage intention of mobile health services: model construction and validation.
BMC Health Serv Res. 2023 May 5;23(1):442. doi: 10.1186/s12913-023-09393-9.
3
Scaling Up TB Screening and TB Preventive Treatment Globally: Key Actions and Healthcare Service Costs.
Trop Med Infect Dis. 2023 Apr 1;8(4):214. doi: 10.3390/tropicalmed8040214.
4
The impact of the COVID-19 pandemic in tuberculosis preventive treatment in Brazil: a retrospective cohort study using secondary data.
Lancet Reg Health Am. 2023 Mar;19:100444. doi: 10.1016/j.lana.2023.100444. Epub 2023 Feb 10.
5
Artificial Intelligence in Paediatric Tuberculosis.
Pediatr Radiol. 2023 Aug;53(9):1733-1745. doi: 10.1007/s00247-023-05606-9. Epub 2023 Jan 28.
7
Impact of COVID-19 on Tuberculosis Indicators in Brazil: A Time Series and Spatial Analysis Study.
Trop Med Infect Dis. 2022 Sep 14;7(9):247. doi: 10.3390/tropicalmed7090247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验