Suppr超能文献

肺部及腹部超声对结核病的诊断准确性:一项印度前瞻性队列研究。

Lung and abdominal ultrasound accuracy for tuberculosis: An Indian prospective cohort study.

作者信息

Weber Stefan Fabian, Wolf Rebecca, Manten Katharina, Thangakunam Balamugesh, Isaac Barney, Shankar Deepa, Mangal Divya, Dutta Amit Kumar, Vimala Leena Robinson, Irodi Aparna, Tobian Frank, Koeppel Lisa, Beck Julia Selena, Wolf Peter, Bélard Sabine, Denkinger Claudia M, Christopher Devasahayam Jesudas

机构信息

Department for Infectious Disease and Tropical Medicine, University Hospital Heidelberg, Heidelberg, Germany.

Department for Parasitology, University Hospital Heidelberg, Heidelberg, Germany.

出版信息

PLoS One. 2025 Sep 3;20(9):e0329670. doi: 10.1371/journal.pone.0329670. eCollection 2025.

Abstract

BACKGROUND

Tuberculosis (TB) diagnosis remains a challenge, particularly in low-resource settings. Point-of-care ultrasound (POCUS) has shown promise, but most studies focus on HIV-infected populations. In the case of TB, data on lung ultrasound (LUS) are sparse. Therefore, this study evaluates the diagnostic accuracy of lung and abdominal ultrasound for TB diagnosis in an Indian tertiary care hospital.

METHODS

We prospectively enrolled adults with presumed TB and performed comprehensive ultrasound assessments. Accuracy of individual and combined sonographic findings was evaluated against a robust reference standard (mycobacterial culture and PCR). Comparators were C-reactive protein at a cut-off of 5mg/l and chest x-ray (CXR). A multivariable model incorporating clinical and ultrasound findings was explored using generalized mixed models and a random forest approach. (Trial registry DRKS00026636).

FINDINGS

Among 541 participants, 102 (19%) were diagnosed with TB and 1% were HIV-positive. The "Focused Assessment with Sonography for HIV-associated TB" (FASH) demonstrated moderate sensitivity (51%) and specificity (70%). Consolidations <1 cm on LUS showed high sensitivity (93%) but low specificity (16%) and were also seen in non-TB lung infections and other conditions like bronchial asthma and COPD. Accuracy of larger (≥1 cm) consolidations (72% sensitive, 55% specific) on LUS was comparable with CXR suggesting possible TB (81% sensitive, 58% specific). Predictive modeling suggests moderate diagnostic performance (AUC = 0.79).

INTERPRETATION

In our study, POCUS did not meet WHO targets for a stand-alone facility-based screening test. Nevertheless, diagnostic accuracy for some findings is comparable to CXR and could be integrated into diagnostic algorithms to improve TB screening where CXR cannot reach. Future research should explore artificial intelligence to enhance TB-POCUS accuracy and accessibility, as was previously reported for CXR.

RESEARCH IN CONTEXT

Prior to this study, lung ultrasound (LUS) for TB had been assessed in only a few studies, limited by uncertain sonographic characterization of TB-related findings, lack of consistent terminology, and small numbers of participants with confirmed non-TB diagnoses to determine specificity for TB. Studies evaluating Focused assessment with sonography for HIV-associated tuberculosis (FASH) almost exclusively included HIV-infected individuals and demonstrated moderate sensitivity and specificity. However, varying study designs and reference standards limit broader generalization of their findings. Our prospective study from a TB-endemic setting (India) recruited 541 predominantly HIV-negative participants with presumed TB. This is the largest cohort to date assessing LUS, FASH, and additional ultrasound findings for TB diagnosis. Our study demonstrates that no single ultrasound finding alone, or even in combination, reaches the accuracy targets of the target product profile for a facility-based screening test (triage) proposed by WHO. FASH accuracy in our study aligned with previously reported data in HIV-negative participants but was less specific in HIV-positive participants. The accuracy of additional ultrasound items of LUS and FASH was comparable to chest x-ray (CXR). In summary, this study demonstrates accuracy of ultrasound for TB diagnosis, backed by a robust study design and using a comprehensive reference standard and CXR comparator for LUS. Modelling suggests that an algorithmic approach combining ultrasound and clinical findings may be of highest value to inform risk of TB and guide further testing to confirm the diagnosis of TB. Other use cases of POCUS, which may aid clinical decision making in the assessment of disease severity, sampling strategy, and monitoring, should be evaluated by future studies. These should also focus on the accuracy of POCUS in people living with HIV and children, as well as evaluate POCUS more broadly as part of a diagnostic algorithm and by using artificial intelligence to improve the yield of TB-POCUS.

摘要

背景

结核病(TB)的诊断仍然是一项挑战,尤其是在资源匮乏的地区。即时超声检查(POCUS)已显示出应用前景,但大多数研究集中在艾滋病毒感染人群。对于结核病,肺部超声(LUS)的数据很少。因此,本研究评估了在印度一家三级护理医院中,肺部和腹部超声对结核病诊断的准确性。

方法

我们前瞻性地招募了疑似患有结核病的成年人,并进行了全面的超声评估。根据可靠的参考标准(分枝杆菌培养和聚合酶链反应)评估了个体和综合超声检查结果的准确性。比较对象为C反应蛋白(临界值为5mg/l)和胸部X光片(CXR)。使用广义混合模型和随机森林方法探索了一个纳入临床和超声检查结果的多变量模型。(试验注册号DRKS00026636)。

研究结果

在541名参与者中,102人(19%)被诊断为结核病,1%为艾滋病毒阳性。“针对艾滋病毒相关结核病的超声重点评估”(FASH)显示出中等的敏感性(51%)和特异性(70%)。LUS上<1厘米的实变显示出高敏感性(93%)但低特异性(16%),并且在非结核肺部感染以及支气管哮喘和慢性阻塞性肺疾病等其他病症中也可见到。LUS上较大(≥1厘米)实变的准确性(敏感性72%,特异性55%)与提示可能患有结核病的CXR相当(敏感性81%,特异性58%)。预测模型显示出中等的诊断性能(曲线下面积=0.79)。

解读

在我们的研究中,POCUS未达到世界卫生组织针对独立的基于设施的筛查测试的目标。然而,某些检查结果的诊断准确性与CXR相当,并且可以整合到诊断算法中,以改善在CXR无法覆盖的地区的结核病筛查。未来的研究应探索人工智能以提高结核病-POCUS的准确性和可及性,正如之前针对CXR所报道的那样。

研究背景

在本研究之前,仅在少数研究中评估了用于结核病的肺部超声(LUS),这些研究受到结核病相关检查结果的超声特征不确定、缺乏一致术语以及确诊非结核诊断的参与者数量较少以确定结核病特异性的限制。评估针对艾滋病毒相关结核病的超声重点评估(FASH)的研究几乎只纳入了艾滋病毒感染个体,并显示出中等的敏感性和特异性。然而,不同的研究设计和参考标准限制了其研究结果的更广泛推广。我们在结核病流行地区(印度)进行的前瞻性研究招募了541名主要为艾滋病毒阴性的疑似结核病参与者。这是迄今为止评估LUS、FASH以及用于结核病诊断的其他超声检查结果的最大队列。我们的研究表明,无论是单独的还是综合的超声检查结果,都未达到世界卫生组织提出的基于设施的筛查测试(分诊)目标产品简介的准确性目标。我们研究中的FASH准确性与之前在艾滋病毒阴性参与者中报道的数据一致,但在艾滋病毒阳性参与者中特异性较低。LUS和FASH的其他超声检查项目的准确性与胸部X光片(CXR)相当。总之,本研究通过强大的研究设计以及使用全面的参考标准和CXR作为LUS的比较对象,证明了超声对结核病诊断的准确性。建模表明,结合超声和临床检查结果的算法方法可能对告知结核病风险和指导进一步检查以确诊结核病具有最高价值。POCUS的其他用例,可能有助于在评估疾病严重程度、采样策略和监测方面的临床决策,应由未来的研究进行评估。这些研究还应关注POCUS在艾滋病毒感染者和儿童中的准确性,并更广泛地将POCUS评估为诊断算法的一部分,以及通过使用人工智能来提高结核病-POCUS的检出率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bc7/12407472/b2761a0e11f3/pone.0329670.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验