Suppr超能文献

用于结核病防控的人工智能:公共卫生应用的范围综述

Artificial intelligence for tuberculosis control: a scoping review of applications in public health.

作者信息

Menon Sonia, Koura Kobto Ghislain

机构信息

International Union against Tuberculosis and Lung Disease, Paris, France.

Epitech Research, Auderghem, Belgium.

出版信息

J Glob Health. 2025 Jul 25;15:04192. doi: 10.7189/jogh.15.04192.

Abstract

BACKGROUND

Artificial intelligence (AI) has become an important tool in global health, improving disease diagnosis and management. Despite advancements, tuberculosis (TB) remains a public health challenge, particularly in low- and middle-income countries where diagnostic methods are limited. In this scoping review, we aim to examine the potential role of AI in TB control.

METHODS

We conducted a search on 25 August 2024 for the past five years, in the PubMed database using keywords related to AI and TB. We included laboratory-based and observational studies focussing on AI applications in TB, excluding non-original research.

RESULTS

There were 34 eligible studies, identifying eight overarching aspects associated with TB control, including active case finding (ACF), triage, pleural effusion diagnosis, multidrug-resistant (MDR) TB and extensively drug-resistant (XDR) TB, differential diagnosis distinguishing active TB from TB infection and other pulmonary communicable diseases, TB and other pulmonary communicable and non-communicable diseases (NCDs), treatment outcome prediction, pleural effusion, and predictions of regional and national trends. AI may transform TB control through enhanced ACF methods and triage, improving detection rates in high-burden regions. With high accuracy, AI may diagnose pleural diagnosis, differentiate TB active and TB infection, TB and non-tuberculous mycobacterial lung disease, COVID-19, and pulmonary NCDs. AI applications may facilitate the prediction of treatment success and adverse effects. Furthermore, AI-driven hotspot mapping may identify undiagnosed TB cases at rates surpassing traditional notification methods. Lastly, predictive modelling and clinical decision support systems may improve the management of MDR-TB.

CONCLUSIONS

This scoping review highlights the potential of AI-driven predictions in national TB programmes to enhance diagnostics, track trends, and strengthen public health surveillance. While promising for reducing transmission and supporting TB care in low-resource settings, these models require large-scale validation to ensure real-world applicability, especially for high-risk groups.

摘要

背景

人工智能(AI)已成为全球卫生领域的一项重要工具,可改善疾病诊断和管理。尽管取得了进展,但结核病(TB)仍然是一项公共卫生挑战,特别是在诊断方法有限的低收入和中等收入国家。在本综述中,我们旨在探讨人工智能在结核病控制中的潜在作用。

方法

我们于2024年8月25日在PubMed数据库中搜索了过去五年中与人工智能和结核病相关的关键词。我们纳入了专注于人工智能在结核病中应用的基于实验室和观察性研究,排除了非原创研究。

结果

共有34项符合条件的研究,确定了与结核病控制相关的八个总体方面,包括活动性病例发现(ACF)、分诊、胸腔积液诊断、耐多药(MDR)结核病和广泛耐药(XDR)结核病、区分活动性结核病与结核感染及其他肺部传染病的鉴别诊断、结核病与其他肺部传染病和非传染性疾病(NCD)、治疗结果预测、胸腔积液以及区域和国家趋势预测。人工智能可通过增强ACF方法和分诊来改变结核病控制,提高高负担地区的检测率。人工智能具有很高的准确性,可诊断胸腔疾病、区分结核病活动性与结核感染、结核病与非结核分枝杆菌肺病、COVID-19和肺部非传染性疾病。人工智能应用可能有助于预测治疗成功和不良反应。此外,人工智能驱动的热点地图绘制可能以超过传统报告方法的速率识别未诊断的结核病病例。最后,预测建模和临床决策支持系统可能改善耐多药结核病的管理。

结论

本综述强调了人工智能驱动的预测在国家结核病规划中增强诊断、跟踪趋势和加强公共卫生监测方面的潜力。虽然这些模型有望在资源匮乏地区减少传播并支持结核病护理,但需要进行大规模验证以确保其在现实世界中的适用性,特别是对于高危人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1642/12290985/b64264d0f0a5/jogh-15-04192-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验