Biswas Shuvo, Saha Sajeeb, Uddin Muhammad Shahin, Mostafiz Rafid
Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
Department of Computer Science and Engineering, The People's University of Bangladesh, Dhaka, Bangladesh.
PLoS One. 2025 Jul 16;20(7):e0324393. doi: 10.1371/journal.pone.0324393. eCollection 2025.
Skin cancer (SC) is the most prominent form of cancer in humans, with over 1 million new cases reported worldwide each year. Early identification of SC plays a crucial role in effective treatment. However, protecting patient data privacy is a major concern in medical research. Therefore, this study presents a smart framework for classifying SC leveraging deep learning (DL), federated learning (FL) and explainable AI (XAI). We tested the presented framework on two well-known datasets, ISBI2016 and ISBI2017. The data was first preprocessed by several techniques: resizing, normalization, balancing, and augmentation. Six advanced DL algorithms-VGG16, Xception, DenseNet169, InceptionV3, MobileViT, and InceptionResNetV2-were applied for classification tasks. Among these, the DenseNet169 algorithm obtained the highest accuracy of 83.3% in ISBI2016 and 92.67% in ISBI2017. All models were then tested in an FL platform to maintain data privacy. In the FL platform, the VGG16 algorithm showed the best results, with 92.08% accuracy on ISBI2016 and 94% on ISBI2017. To ensure model interpretability, an XAI-based algorithm named Local Interpretable Model-Agnostic Explanations (LIME) was used to explain the predictions of the proposed framework. We believe the proposed framework offers a dependable tool for SC diagnosis while protecting sensitive medical data.
皮肤癌(SC)是人类中最常见的癌症形式,全球每年报告的新病例超过100万例。早期识别皮肤癌在有效治疗中起着至关重要的作用。然而,保护患者数据隐私是医学研究中的一个主要问题。因此,本研究提出了一个利用深度学习(DL)、联邦学习(FL)和可解释人工智能(XAI)对皮肤癌进行分类的智能框架。我们在两个著名的数据集ISBI2016和ISBI2017上测试了所提出的框架。数据首先通过几种技术进行预处理:调整大小、归一化、平衡和增强。六种先进的深度学习算法——VGG16、Xception、DenseNet169、InceptionV3、MobileViT和InceptionResNetV2——被应用于分类任务。其中,DenseNet169算法在ISBI2016中获得了最高准确率83.3%,在ISBI2017中获得了92.67%。然后在联邦学习平台上对所有模型进行测试以维护数据隐私。在联邦学习平台中,VGG16算法显示出最佳结果,在ISBI2016上的准确率为92.08%,在ISBI2017上为94%。为了确保模型的可解释性,使用了一种基于XAI的名为局部可解释模型无关解释(LIME)的算法来解释所提出框架的预测。我们相信所提出框架在保护敏感医疗数据的同时为皮肤癌诊断提供了一个可靠的工具。