Wyder Philippe Martin, Bakhda Riyaan, Zhao Meiqi, Booth Quinn A, Modi Matthew E, Song Andrew, Kang Simon, Wu Jiahao, Patel Priya, Kasumi Robert T, Yi David, Garg Nihar Niraj, Jhunjhunwala Pranav, Bhutoria Siddharth, Tong Evan H, Hu Yuhang, Goldfeder Judah, Mustel Omer, Kim Donghan, Lipson Hod
Mechanical Engineering, Columbia University, 220 S. W. Mudd Building, 500 West 120th Street, New York, NY 10027, USA.
Computer Science, Columbia University, 450 S. W. Mudd Building, 500 West 120th Street, New York, NY 10027, USA.
Sci Adv. 2025 Jul 18;11(29):eadu6897. doi: 10.1126/sciadv.adu6897. Epub 2025 Jul 16.
Biological lifeforms can heal, grow, adapt, and reproduce, which are abilities essential for sustained survival and development. In contrast, robots today are primarily monolithic machines with limited ability to self-repair, physically develop, or incorporate material from their environments. While robot minds rapidly evolve new behaviors through artificial intelligence, their bodies remain closed systems, unable to systematically integrate material to grow or heal. We argue that open-ended physical adaptation is only possible when robots are designed using a small repertoire of simple modules. This allows machines to mechanically adapt by consuming parts from other machines or their surroundings and shed broken components. We demonstrate this principle on a truss modular robot platform. We show how robots can grow bigger, faster, and more capable by consuming materials from their environment and other robots. We suggest that machine metabolic processes like those demonstrated here will be an essential part of any sustained future robot ecology.
生物生命形式能够愈合、生长、适应和繁殖,这些能力是持续生存和发展所必需的。相比之下,如今的机器人主要是整体式机器,自我修复、物理发育或从周围环境中吸收物质的能力有限。虽然机器人的思维通过人工智能迅速进化出新行为,但其身体仍然是封闭系统,无法系统地整合物质以生长或愈合。我们认为,只有当机器人使用少量简单模块进行设计时,开放式物理适应才有可能实现。这使得机器能够通过消耗其他机器或其周围环境中的部件进行机械适应,并丢弃损坏的部件。我们在一个桁架模块化机器人平台上演示了这一原理。我们展示了机器人如何通过消耗其环境和其他机器人中的材料来变得更大、更快、更有能力。我们认为,像这里展示的机器代谢过程将是未来任何可持续机器人生态的重要组成部分。