Xuan Zhang
Jimei University, Xiamen, 361021, China.
Anal Chim Acta. 2025 Sep 22;1368:344311. doi: 10.1016/j.aca.2025.344311. Epub 2025 Jun 11.
Formaldehyde, a hazardous indoor pollutant, poses serious health risks even at low concentrations. Metal-organic frameworks (MOFs), due to their high porosity and tunable structures, offer promising potential for selective gas adsorption and separation. However, identifying high-performance MOFs from thousands of candidates using traditional experiments is time-consuming and inefficient. This study addressed the need for efficient MOF screening strategies by integrating high-throughput atomistic simulations, machine learning, and crystal graph convolutional neural networks (CGCNN) to evaluate the adsorption and separation performance of MOFs for formaldehyde, nitrogen (N), and oxygen (O).
We recalculated charges for 4400 MOFs from the CoreMOF2019 database using PACMAN and performed GCMC simulations to determine Henry's constants and adsorption isotherms. Based on hydrophobicity screening, 440 MOFs were selected for detailed simulation and machine learning modeling. Gradient Boosted Regression (GBR) and CGCNN models were trained to predict adsorption behavior with R values over 0.98, significantly reducing computational costs. Breakthrough and Ideal Adsorbed Solution Theory (IAST) simulations were used to assess multicomponent separation performance, identifying LEVLEF as the top MOF with high selectivity for formaldehyde. Ideal Vacuum Swing Adsorption (IVSA) simulations further confirmed the dynamic separation behavior. Experimental validation with MIL-101 and HKUST-1 confirmed the prediction accuracy of ML models, highlighting the structural factors influencing gas uptake.
This work demonstrates the power of machine learning and CGCNN in accurately predicting gas adsorption behavior in MOFs, drastically accelerating the screening process. By integrating simulation, modeling, and experimental validation, the study offers a comprehensive pipeline for the rational design and selection of MOFs for efficient indoor air purification and multi-component gas separation, with strong potential for environmental and industrial applications.
甲醛是一种有害的室内污染物,即使在低浓度下也会带来严重的健康风险。金属有机框架材料(MOFs)因其高孔隙率和可调节结构,在选择性气体吸附和分离方面具有广阔的应用潜力。然而,使用传统实验从数千种候选材料中筛选出高性能的MOFs既耗时又低效。本研究通过整合高通量原子模拟、机器学习和晶体图卷积神经网络(CGCNN)来评估MOFs对甲醛、氮气(N)和氧气(O)的吸附和分离性能,满足了高效筛选MOF策略的需求。
我们使用PACMAN重新计算了CoreMOF2019数据库中4400种MOFs的电荷,并进行了巨正则蒙特卡罗(GCMC)模拟以确定亨利常数和吸附等温线。基于疏水性筛选,选择了440种MOFs进行详细模拟和机器学习建模。训练了梯度提升回归(GBR)和CGCNN模型来预测吸附行为,R值超过0.98,显著降低了计算成本。采用突破和理想吸附溶液理论(IAST)模拟来评估多组分分离性能,确定LEVLEF为对甲醛具有高选择性的最佳MOF。理想变压吸附(IVSA)模拟进一步证实了动态分离行为。对MIL-101和HKUST-1的实验验证证实了机器学习模型的预测准确性,突出了影响气体吸收的结构因素。
这项工作展示了机器学习和CGCNN在准确预测MOFs中气体吸附行为方面的强大能力,极大地加速了筛选过程。通过整合模拟、建模和实验验证,该研究为合理设计和选择用于高效室内空气净化和多组分气体分离的MOFs提供了一个全面的流程,在环境和工业应用方面具有巨大潜力。