Suppr超能文献

基于上下文信息的多场景航空视频异常检测

Contextual information based anomaly detection for multi-scene aerial videos.

作者信息

S Girisha, Verma Ujjwal, Pai Manohara M M, Pai Radhika M

机构信息

Department of Data Science and Computer Applications, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104.

出版信息

Sci Rep. 2025 Jul 16;15(1):25805. doi: 10.1038/s41598-025-07486-5.

Abstract

Aerial video surveillance using Unmanned Aerial Vehicles (UAV) is gaining much interest worldwide due to its extensive applications in monitoring wildlife, urban planning, disaster management, anomaly detection, campus security, etc. These videos are processed and analyzed for strange/odd/anomalous patterns, which are essential requirements of surveillance. But manual analysis of these videos is tedious, subjective, and laborious. Hence, developing computer-aided systems for analyzing UAV-based surveillance videos is crucial. Despite this interest, in the literature, most of the video surveillance applications are developed focusing only on CCTV-based surveillance videos which are static. Thus, these methods cannot be extended for scenarios where the background/context information is dynamic (multi-scene). Further, the lack of standard UAV-based anomaly detection datasets has restricted the development of novel algorithms. In this regard, the present work proposes a novel multi-scene aerial video anomaly detection dataset with frame-level annotations. In addition, a novel Computer Aided Decision (CAD) support system is proposed to analyze and detect anomalous patterns from UAV-based surveillance videos. The proposed system holistically utilizes contextual, temporal, and appearance features for the accurate detection of anomalies. A novel feature descriptor is designed to effectively capture contextual information necessary for analyzing multi-scene videos. Additionally, temporal and appearance features are extracted to handle the complexities of dynamic videos, enabling the system to recognize motion patterns and visual inconsistencies over time. Furthermore, a new inference strategy is proposed that utilizes a few anomalous samples along with normal samples to identify better decision boundaries. The proposed method is extensively evaluated on the proposed UAV anomaly detection dataset and performs competitively with respect to state-of-the-art methods with an AUC of 0.712.

摘要

由于无人机在野生动物监测、城市规划、灾害管理、异常检测、校园安全等领域的广泛应用,使用无人机进行空中视频监控在全球范围内引起了广泛关注。这些视频会被处理和分析以寻找奇怪/异常/不规则的模式,这是监控的基本要求。但是对这些视频进行人工分析既繁琐、主观又费力。因此,开发用于分析基于无人机的监控视频的计算机辅助系统至关重要。尽管有这种兴趣,但在文献中,大多数视频监控应用仅专注于基于闭路电视的静态监控视频的开发。因此,这些方法无法扩展到背景/上下文信息是动态的(多场景)情况。此外,缺乏基于无人机的标准异常检测数据集限制了新算法的开发。在这方面,本工作提出了一个具有帧级注释的新型多场景空中视频异常检测数据集。此外,还提出了一种新型计算机辅助决策(CAD)支持系统,用于分析和检测基于无人机的监控视频中的异常模式。所提出的系统全面利用上下文、时间和外观特征来准确检测异常。设计了一种新型特征描述符,以有效捕获分析多场景视频所需的上下文信息。此外,提取时间和外观特征以处理动态视频的复杂性,使系统能够识别随时间的运动模式和视觉不一致性。此外,还提出了一种新的推理策略,该策略利用一些异常样本和正常样本一起识别更好的决策边界。所提出的方法在提出的无人机异常检测数据集上进行了广泛评估,并且相对于现有方法具有竞争力,AUC为0.712。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8df9/12267532/24ff057c4e85/41598_2025_7486_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验