Suppr超能文献

利用统计特征和区域生长技术进行胶囊内镜视频中的自动出血检测。

Automated bleeding detection in capsule endoscopy videos using statistical features and region growing.

作者信息

Sainju Sonu, Bui Francis M, Wahid Khan A

机构信息

University of Saskatchewan, Saskatoon, SK, Canada.

出版信息

J Med Syst. 2014 Apr;38(4):25. doi: 10.1007/s10916-014-0025-1. Epub 2014 Apr 3.

Abstract

Wireless Capsule Endoscopy (WCE) is a technology in the field of endoscopic imaging which facilitates direct visualization of the entire small intestine. Many algorithms are being developed to automatically identify clinically important frames in WCE videos. This paper presents a supervised method for automated detection of bleeding regions present in WCE frames or images. The proposed method characterizes the image regions by using statistical features derived from the first order histogram probability of the three planes of RGB color space. Despite being inconsistent and tiresome, manual selection of regions has been a popular technique for creating training data in the studies of capsule endoscopic images. We propose a semi-automatic region-annotation algorithm for creating training data efficiently. All possible combinations of different features are exhaustively analyzed to find the optimum feature set with the best performance. During operation, regions from images are obtained by applying a segmentation method. Finally, a trained neural network recognizes the patterns of the data arising from bleeding and non-bleeding regions.

摘要

无线胶囊内镜检查(WCE)是一种内镜成像技术,可直接观察整个小肠。目前正在开发许多算法来自动识别WCE视频中具有临床重要意义的帧。本文提出了一种用于自动检测WCE帧或图像中出血区域的监督方法。该方法通过使用从RGB颜色空间三个平面的一阶直方图概率导出的统计特征来表征图像区域。尽管手动选择区域既不一致又繁琐,但在胶囊内镜图像研究中,它一直是创建训练数据的常用技术。我们提出了一种半自动区域标注算法,以有效地创建训练数据。对不同特征的所有可能组合进行详尽分析,以找到性能最佳的最优特征集。在操作过程中,通过应用分割方法从图像中获取区域。最后,经过训练的神经网络识别出血区域和非出血区域产生的数据模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验