Sainju Sonu, Bui Francis M, Wahid Khan A
University of Saskatchewan, Saskatoon, SK, Canada.
J Med Syst. 2014 Apr;38(4):25. doi: 10.1007/s10916-014-0025-1. Epub 2014 Apr 3.
Wireless Capsule Endoscopy (WCE) is a technology in the field of endoscopic imaging which facilitates direct visualization of the entire small intestine. Many algorithms are being developed to automatically identify clinically important frames in WCE videos. This paper presents a supervised method for automated detection of bleeding regions present in WCE frames or images. The proposed method characterizes the image regions by using statistical features derived from the first order histogram probability of the three planes of RGB color space. Despite being inconsistent and tiresome, manual selection of regions has been a popular technique for creating training data in the studies of capsule endoscopic images. We propose a semi-automatic region-annotation algorithm for creating training data efficiently. All possible combinations of different features are exhaustively analyzed to find the optimum feature set with the best performance. During operation, regions from images are obtained by applying a segmentation method. Finally, a trained neural network recognizes the patterns of the data arising from bleeding and non-bleeding regions.
无线胶囊内镜检查(WCE)是一种内镜成像技术,可直接观察整个小肠。目前正在开发许多算法来自动识别WCE视频中具有临床重要意义的帧。本文提出了一种用于自动检测WCE帧或图像中出血区域的监督方法。该方法通过使用从RGB颜色空间三个平面的一阶直方图概率导出的统计特征来表征图像区域。尽管手动选择区域既不一致又繁琐,但在胶囊内镜图像研究中,它一直是创建训练数据的常用技术。我们提出了一种半自动区域标注算法,以有效地创建训练数据。对不同特征的所有可能组合进行详尽分析,以找到性能最佳的最优特征集。在操作过程中,通过应用分割方法从图像中获取区域。最后,经过训练的神经网络识别出血区域和非出血区域产生的数据模式。