Suppr超能文献

我能信任这篇论文吗?

Can I trust this paper?

作者信息

Anikin Andrey

机构信息

Division of Cognitive Science, Department of Philosophy, Lund University, Box 192, SE-221 00, Lund, Sweden.

出版信息

Psychon Bull Rev. 2025 Jul 16. doi: 10.3758/s13423-025-02740-3.

Abstract

After a decade of data falsification scandals and replication failures in psychology and related empirical disciplines, there are urgent calls for open science and structural reform in the publishing industry. In the meantime, however, researchers need to learn how to recognize tell-tale signs of methodological and conceptual shortcomings that make a published claim suspect. I review four key problems and propose simple ways to detect them. First, the study may be fake; if in doubt, inspect the authors' and journal's profiles and request to see the raw data to check for inconsistencies. Second, there may be too little data; low precision of effect sizes is a clear warning sign of this. Third, the data may not be analyzed correctly; excessive flexibility in data analysis can be deduced from signs of data dredging and convoluted post hoc theorizing in the text, while violations of model assumptions can be detected by examining plots of observed data and model predictions. Fourth, the conclusions may not be justified by the data; common issues are inappropriate acceptance of the null hypothesis, biased meta-analyses, over-generalization over unmodeled variance, hidden confounds, and unspecific theoretical predictions. The main takeaways are to verify that the methodology is robust and to distinguish between what the actual results are and what the authors claim these results mean when citing empirical work. Critical evaluation of published evidence is an essential skill to develop as it can prevent researchers from pursuing unproductive avenues and ensure better trustworthiness of science as a whole.

摘要

在心理学及相关实证学科经历了十年的数据造假丑闻和复制失败后,业界迫切呼吁开放科学以及出版行业进行结构性改革。然而与此同时,研究人员需要学会如何识别方法和概念缺陷的明显迹象,这些缺陷会使已发表的论断受到质疑。我审视了四个关键问题,并提出了检测它们的简单方法。首先,该研究可能是伪造的;如有疑问,查看作者和期刊的简介,并要求查看原始数据以检查是否存在不一致之处。其次,可能数据量太少;效应量的低精度就是一个明显的警示信号。第三,数据可能未得到正确分析;从数据挖掘的迹象以及文本中复杂的事后推理可以推断出数据分析存在过度灵活性,而通过检查观测数据和模型预测的图表可以检测到模型假设的违反情况。第四,结论可能无法由数据证明合理;常见问题包括对原假设的不当接受、有偏差的元分析、对未建模方差的过度概括、隐藏的混杂因素以及不具体的理论预测。主要要点是要验证方法是否稳健,并区分实际结果是什么以及作者在引用实证研究时声称这些结果意味着什么。对已发表证据进行批判性评估是一项需要培养的基本技能,因为它可以防止研究人员走上徒劳无功的道路,并确保整个科学具有更高的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验