Suppr超能文献

孕早期二维与三维人工智能增强超声测量胎儿头臀长的对比研究

Comparative study of 2D vs. 3D AI-enhanced ultrasound for fetal crown-rump length evaluation in the first trimester.

作者信息

Zhang Yuanji, Huang Yuhao, Chen Chaoyu, Hu Xing, Pan Wenxiong, Luo Huanjia, Huang Yankai, Wang Haixia, Cao Yan, Yi Yan, Xiong Yi, Ni Dong

机构信息

National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.

Medical Ultrasound Image Computing (MUSIC) Lab, Shenzhen University, Shenzhen, Guangdong, China.

出版信息

BMC Pregnancy Childbirth. 2025 Jul 16;25(1):766. doi: 10.1186/s12884-025-07823-6.

Abstract

BACKGROUND

Accurate fetal growth evaluation is crucial for monitoring fetal health, with crown-rump length (CRL) being the gold standard for estimating gestational age and assessing growth during the first trimester. To enhance CRL evaluation accuracy and efficiency, we developed an artificial intelligence (AI)-based model (3DCRL-Net) using the 3D U-Net architecture for automatic landmark detection to achieve CRL plane localization and measurement in 3D ultrasound. We then compared its performance to that of experienced radiologists using both 2D and 3D ultrasound for fetal growth assessment.

MATERIALS AND METHODS

This prospective consecutive study collected fetal data from 1,326 ultrasound screenings conducted at 11-14 weeks of gestation (June 2021 to June 2023). Three experienced radiologists performed fetal screening using 2D video (2D-RAD) and 3D volume (3D-RAD) to obtain the CRL plane and measurement. The 3DCRL-Net model automatically outputs the landmark position, CRL plane localization and measurement. Three specialists audited the planes achieved by radiologists and 3DCRL-Net as standard or non-standard. The performance of CRL landmark detection, plane localization, measurement and time efficiency was evaluated in the internal testing dataset, comparing results with 3D-RAD. In the external dataset, CRL plane localization, measurement accuracy, and time efficiency were compared among the three groups.

RESULTS

The internal dataset consisted of 126 cases in the testing set (training: validation: testing = 8:1:1), and the external dataset included 245 cases. On the internal testing set, 3DCRL-Net achieved a mean absolute distance error of 1.81 mm for the nine landmarks, higher accuracy in standard plane localization compared to 3D-RAD (91.27% vs. 80.16%), and strong consistency in CRL measurements (mean absolute error (MAE): 1.26 mm; mean difference: 0.37 mm, P = 0.70). The average time required per fetal case was 2.02 s for 3DCRL-Net versus 2 min for 3D-RAD (P < 0.001). On the external testing dataset, 3DCRL-Net demonstrated high performance in standard plane localization, achieving results comparable to 2D-RAD and 3D-RAD (accuracy: 91.43% vs. 93.06% vs. 86.12%), with strong consistency in CRL measurements, compared to 2D-RAD, which showed an MAE of 1.58 mm and a mean difference of 1.12 mm (P = 0.25). For 2D-RAD vs. 3DCRL-Net, the Pearson correlation and R² were 0.96 and 0.93, respectively, with an MAE of 0.11 ± 0.12 weeks. The average time required per fetal case was 5 s for 3DCRL-Net, compared to 2 min for 3D-RAD and 35 s for 2D-RAD (P < 0.001).

CONCLUSIONS

The 3DCRL-Net model provides a rapid, accurate, and fully automated solution for CRL measurement in 3D ultrasound, achieving expert-level performance and significantly improving the efficiency and reliability of first-trimester fetal growth assessment.

摘要

背景

准确评估胎儿生长对于监测胎儿健康至关重要,头臀长度(CRL)是估计孕周和评估孕早期生长情况的金标准。为提高CRL评估的准确性和效率,我们使用3D U-Net架构开发了一种基于人工智能(AI)的模型(3DCRL-Net),用于自动地标检测,以实现三维超声中CRL平面的定位和测量。然后,我们将其性能与经验丰富的放射科医生使用二维和三维超声进行胎儿生长评估的性能进行了比较。

材料与方法

这项前瞻性连续研究收集了2021年6月至2023年6月在妊娠11-14周进行的1326次超声筛查的胎儿数据。三名经验丰富的放射科医生使用二维视频(2D-RAD)和三维容积(3D-RAD)进行胎儿筛查,以获得CRL平面和测量值。3DCRL-Net模型自动输出地标位置、CRL平面定位和测量值。三名专家审核放射科医生和3DCRL-Net获得的平面是否为标准或非标准平面。在内部测试数据集中评估CRL地标检测、平面定位、测量和时间效率的性能,并将结果与3D-RAD进行比较。在外部数据集中,比较三组之间的CRL平面定位、测量准确性和时间效率。

结果

内部数据集在测试集中包含126例(训练:验证:测试 = 8:1:1),外部数据集包含245例。在内部测试集上,3DCRL-Net在九个地标上的平均绝对距离误差为1.81毫米,与3D-RAD相比,在标准平面定位上具有更高的准确性(91.27%对80.16%),并且在CRL测量上具有很强的一致性(平均绝对误差(MAE):1.26毫米;平均差异:0.37毫米,P = 0.70)。3DCRL-Net每例胎儿平均所需时间为2.02秒,而3D-RAD为2分钟(P < 0.001)。在外部测试数据集上,3DCRL-Net在标准平面定位上表现出高性能,取得了与2D-RAD和3D-RAD相当的结果(准确性:91.43%对93.06%对86.12%),与2D-RAD相比,在CRL测量上具有很强的一致性,2D-RAD的MAE为1.58毫米,平均差异为1.12毫米(P = 0.25)。对于2D-RAD与3DCRL-Net,Pearson相关性和R²分别为0.96和0.93,MAE为0.11±0.12周。3DCRL-Net每例胎儿平均所需时间为5秒,而3D-RAD为2分钟,2D-RAD为35秒(P < 0.001)。

结论

3DCRL-Net模型为三维超声中的CRL测量提供了一种快速、准确且完全自动化的解决方案,达到了专家级性能,并显著提高了孕早期胎儿生长评估的效率和可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验