Suppr超能文献

稳定性参数与选择模型之间的相互作用:一种改进多环境试验中优良基因型识别的新方法。

Cross-talk between stability parameters and selection models: a new procedure for improving the identification of the superior genotypes in multi-environment trials.

作者信息

Pour-Aboughadareh Alireza, Jadidi Omid, Jamshidi Bita, Bocianowski Jan, Niemann Janetta

机构信息

Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3183964653, Iran.

Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, 14778-93855, Iran.

出版信息

BMC Res Notes. 2025 Jul 16;18(1):306. doi: 10.1186/s13104-025-07366-1.

Abstract

OBJECTIVE

Evaluating new promising genotypes across multiple environments emphasizes the importance of grain yield stability and increasing production in sustainable agricultural systems. One way to achieve this is through multi-environment trials (METs) studying genotype-by-environment interaction (GEI) effects. GEI analysis has significantly advanced over the years, with various models and methods developed to better understand and utilize this phenomenon in plant breeding and finally identification of high-yielding and stable genotypes. This report aimed to integrate various stability parameters and selection models to achieve better decisions in selecting superior genotypes. Moreover, modified R-based scripts for selection models have been presented.

RESULTS

According to the combined analysis of variance (ANOVA) and additive main effects and multiplicative interaction (AMMI) model, the main effects of environment (E), genotype (G), and their interaction (GEI) were significant for grain yield data. Our results showed that integrating stability parameters and selection models successfully identified superior genotypes. The selected genotypes by FAI-BLUP and MGIDI in addition to stability have higher performances than other genotypes, while the ranking method only selected genotypes with high stability. In conclusion, three genotypes G3, G4, and G6 were identified as high-yielding and stable genotypes for more evaluation in the warm regions of Iran.

摘要

目的

在多个环境中评估新的有潜力的基因型,凸显了粮食产量稳定性以及在可持续农业系统中提高产量的重要性。实现这一目标的一种方法是通过多环境试验(METs)来研究基因型与环境互作(GEI)效应。多年来,GEI分析取得了显著进展,已开发出各种模型和方法,以便在植物育种中更好地理解和利用这一现象,并最终鉴定出高产且稳定的基因型。本报告旨在整合各种稳定性参数和选择模型,以便在选择优良基因型时做出更优决策。此外,还给出了基于R的选择模型修改脚本。

结果

根据方差联合分析(ANOVA)和加性主效应与乘积互作(AMMI)模型,环境(E)、基因型(G)及其互作(GEI)对粮食产量数据的主效应均显著。我们的结果表明,整合稳定性参数和选择模型成功鉴定出了优良基因型。除稳定性外,通过FAI-BLUP和MGIDI选择出的基因型比其他基因型具有更高的表现,而排名方法仅选择了具有高稳定性的基因型。总之,基因型G3、G4和G6被鉴定为高产且稳定的基因型,以便在伊朗温暖地区进行更多评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验