Suppr超能文献

后生动物脂肪酸合酶的支链脂肪酸合成的酶动力学

The enzyme kinetics of branched-chain fatty acid synthesis of metazoan fatty acid synthase.

作者信息

Gusenda Christian, Ochs Kim, Cui Ziheng, Ludig Damian L, Grininger Martin

机构信息

Institute of Organic Chemistry and Chemical Biology, Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.

出版信息

Protein Sci. 2025 Aug;34(8):e70229. doi: 10.1002/pro.70229.

Abstract

Branched-chain fatty acids (BCFAs) exhibit enhanced oxidative stability, lower melting points, and reduced viscosity compared to straight-chain fatty acids (StCFAs), making them valuable for biological systems and industrial applications. Previous studies have shown that metazoan fatty acid synthase (mFAS) can produce BCFAs through the incorporation of branched starter units and branched extender substrates such as methylmalonyl-CoA (metmal-CoA). However, the mechanistic and kinetic underpinnings of BCFA biosynthesis in metazoans remain poorly understood. Here, we address this by characterizing the kinetic parameters of mFAS-catalyzed BCFA synthesis using NADPH consumption assays and analyzing the synthesized products via GC-MS. These experiments revealed a lower turnover number of mFAS with metmal-CoA and a shift toward medium-chain fatty acids compared to the native StCFA biosynthesis with malonyl-CoA. The ketoacyl synthase (KS) kinetic measurements revealed low elongation rates, indicating that the KS domain dictates the substrate specificity and speed of BCFA production. To gain a better understanding of the reaction mechanism, we performed molecular dynamic simulations, which revealed key KS: substrate interactions by conserved threonine residues. These insights support a refined decarboxylative condensation mechanism and illuminate how substrate specificity arises within mFAS. These findings offer a foundation for future protein engineering and inhibitor design strategies.

摘要

与直链脂肪酸(StCFAs)相比,支链脂肪酸(BCFAs)具有更高的氧化稳定性、更低的熔点和更低的粘度,这使得它们在生物系统和工业应用中具有重要价值。先前的研究表明,后生动物脂肪酸合酶(mFAS)可以通过掺入支链起始单元和支链延伸底物(如甲基丙二酰辅酶A(metmal-CoA))来产生BCFAs。然而,后生动物中BCFA生物合成的机制和动力学基础仍知之甚少。在这里,我们通过使用NADPH消耗测定法表征mFAS催化的BCFA合成的动力学参数,并通过气相色谱-质谱联用(GC-MS)分析合成产物来解决这个问题。这些实验表明,与使用丙二酰辅酶A的天然StCFA生物合成相比,mFAS与metmal-CoA的周转数较低,并且合成产物向中链脂肪酸转移。酮酰基合酶(KS)的动力学测量显示伸长率较低,这表明KS结构域决定了BCFA产生的底物特异性和速度。为了更好地理解反应机制,我们进行了分子动力学模拟,结果揭示了保守的苏氨酸残基与底物之间的关键KS相互作用。这些见解支持了一种改进的脱羧缩合机制,并阐明了mFAS中底物特异性是如何产生的。这些发现为未来的蛋白质工程和抑制剂设计策略奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验