Suppr超能文献

对行为上不同睡眠阶段的识别揭示了以前被掩盖的睡眠稳态和昼夜节律控制。

The recognition of behaviorally distinct sleep stages in uncovers previously obscured homeostatic and circadian control of sleep.

作者信息

Abhilash Lakshman, Shafer Orie Thomas

出版信息

bioRxiv. 2025 Jul 8:2025.06.23.661143. doi: 10.1101/2025.06.23.661143.

Abstract

UNLABELLED

Understanding the mechanisms underlying homeostatic sleep regulation is a central unmet goal of sleep science. Our comprehension of such regulation in mammals has required recognizing distinct sleep stages. is an important genetic model system for studying sleep. Since the discovery of sleep-like states in the fly 25 years ago, the field has treated sleep as a unitary state consisting of any inactivity lasting 5 minutes or longer, despite convergent work suggesting the existence of multiple sleep stages. Here, we establish that three distinct sleep stages in flies can be classified based on simple inactivity duration criteria. We show that the daily initiation of these sleep stages is temporally distinct, with long sleep occurring immediately following the largest daily period of wakefulness. We also report that rebound in response to mechanical sleep deprivation is present only in long sleep and comes at the expense of shorter sleep stages. Deprivation-induced decreases in shorter sleep stages obscure homeostatic sleep rebound, but only when sleep is measured using traditional methods. We observe distinctly timed ultradian oscillations of fly sleep stages, reminiscent of mammalian sleep cycles. Our results indicate that the recognition of such sleep stages will be necessary to fully realize the promise of the model system for identifying conserved genetic mechanisms underlying such regulation.

SIGNIFICANCE

Sleep episodes in humans and mammalian models are composed of distinct stages - a fundamental discovery in sleep science. This recognition enabled researchers to study the physiological underpinnings of sleep stages and examine the comorbidities and consequences associated with disrupted sleep. The mechanisms underlying sleep homeostasis remain an open problem, and the fruit fly continues to be a powerful genetic and neurobiological model to study sleep regulation. Despite recent convergent evidence for distinct sleep stages in the fly, sleep continues to be treated as a unitary state consisting of any inactivity lasting five minutes or longer. This likely obscures important aspects of sleep regulation in the fly, limiting its impact on our understanding of sleep regulation. Inspired by recently developed wearable technologies, which score sleep stages based on motion detection and accelerometry, we asked if distinct fly sleep stages can be identified based on durations of inactivity bouts, and, if so, whether such stages are differentially regulated by the two major processes governing sleep: sleep homeostasis and circadian timekeeping. We show that discrete sleep stages can indeed be identified, and that they show distinct interactions amongst each other, and distinct relationships to the homeostat and the circadian clock. Importantly, we find that sleep deprivation produces increases in longer (presumably deeper) sleep stages while producing decreases in shorter sleep stages. These opposing responses to deprivation obscure homeostatic sleep responses when the traditional, unitary definition of sleep is used, a reality that has likely hampered the identification of homeostatic regulatory mechanisms in the fly. We concluded that using the simple behavioral criterion we describe here to differentiate sleep stages will be critical for understanding homeostatic and circadian sleep regulation in , which remains an important model organism for the discovery of mechanisms of sleep regulation.

摘要

未标注

理解稳态睡眠调节的潜在机制是睡眠科学中一个尚未实现的核心目标。我们对哺乳动物这种调节的理解需要识别不同的睡眠阶段。果蝇是研究睡眠的重要遗传模型系统。自25年前在果蝇中发现类似睡眠的状态以来,尽管有多项研究表明存在多个睡眠阶段,但该领域一直将睡眠视为一种单一状态,即任何持续5分钟或更长时间的静止状态。在这里,我们确定果蝇的三个不同睡眠阶段可以根据简单的静止持续时间标准进行分类。我们表明,这些睡眠阶段的每日起始时间在时间上是不同的,长时间睡眠紧接着每日最长的清醒期出现。我们还报告说,对机械性睡眠剥夺的反弹仅出现在长时间睡眠中,且是以较短睡眠阶段为代价的。剥夺导致的较短睡眠阶段的减少掩盖了稳态睡眠反弹,但只有在使用传统方法测量睡眠时才会如此。我们观察到果蝇睡眠阶段有明显定时的超日振荡,这让人联想到哺乳动物的睡眠周期。我们的结果表明,识别这些睡眠阶段对于充分实现果蝇模型系统在识别这种调节背后的保守遗传机制方面的潜力是必要的。

意义

人类和哺乳动物模型中的睡眠时段由不同阶段组成——这是睡眠科学中的一项基本发现。这一认识使研究人员能够研究睡眠阶段的生理基础,并检查与睡眠中断相关的合并症和后果。睡眠稳态的潜在机制仍然是一个未解决的问题,果蝇仍然是研究睡眠调节的强大遗传和神经生物学模型。尽管最近有越来越多的证据表明果蝇存在不同的睡眠阶段,但睡眠仍然被视为一种单一状态,即任何持续五分钟或更长时间的静止状态。这可能掩盖了果蝇睡眠调节的重要方面,限制了其对我们理解睡眠调节的影响。受最近开发的可穿戴技术的启发,这些技术基于运动检测和加速度测量对睡眠阶段进行评分,我们询问是否可以根据静止时段的持续时间识别果蝇的不同睡眠阶段,如果可以,这些阶段是否受到控制睡眠的两个主要过程——睡眠稳态和昼夜节律计时——的不同调节。我们表明,确实可以识别离散的睡眠阶段,并且它们彼此之间表现出不同的相互作用,以及与稳态调节器和生物钟的不同关系。重要的是,我们发现睡眠剥夺会导致较长(可能较深)睡眠阶段增加,同时较短睡眠阶段减少。当使用传统的单一睡眠定义时,这些对剥夺的相反反应掩盖了稳态睡眠反应,这一现实可能阻碍了果蝇中稳态调节机制的识别。我们得出结论,使用我们这里描述的简单行为标准来区分睡眠阶段对于理解果蝇的稳态和昼夜睡眠调节至关重要,果蝇仍然是发现睡眠调节机制的重要模式生物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/689c/12265548/d5e110470de0/nihpp-2025.06.23.661143v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验