文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

巨噬细胞极化和蛋白质乳酰化相关基因揭示的胃癌预后及肿瘤微环境特征

Prognostic and tumor microenvironmental features of gastric cancer revealed by macrophage polarization and protein lactylation-related genes.

作者信息

Xu Zifan, Lei Zi, Peng Shilan, Li Sha, Kong Dehui, Duan Hongqiong, Zhang Man, Su Guomiao, Pan Guoqing

机构信息

Department of Pathology, Kunming Medical University, Kunming, Yunnan, China.

Department of Pathology, First Affliated Hospital of Kunming Medical University, Kunming, China.

出版信息

Front Genet. 2025 Jul 2;16:1541489. doi: 10.3389/fgene.2025.1541489. eCollection 2025.


DOI:10.3389/fgene.2025.1541489
PMID:40672391
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12263385/
Abstract

BACKGROUND: The progression of gastric cancer (GC) is closely linked to macrophage polarization and protein lactylation; however, its underlying mechanisms remain poorly understood. This study aimed to elucidate the molecular mechanisms of GC using transcriptomic analysis. METHODS: Candidate genes were identified by intersecting differentially expressed genes with key module genes associated with protein lactylation and macrophage polarization. Protein-protein interaction analysis was performed to uncover interacting genes. Prognostic genes were determined using univariate Cox regression and machine learning techniques, with model accuracy assessed via training and validation datasets. Further, enrichment analysis, immune infiltration profiling, gene mutation analysis, and drug sensitivity assessments were conducted for high- and low-risk groups. Chromosomal localization, gene-gene interaction network analysis, and expression validation of prognostic genes were also performed. RESULTS: Two prognostic genes, ERCC6L and MYB, were identified as significant markers of prognosis through comprehensive analyses. A risk model based on these genes accurately predicted survival in patients with GC. Enrichment analysis revealed pathways such as the muscle myosin complex and adipogenesis as significantly involved in GC. Immune infiltration analysis identified 13 immune cell types, including monocytes, with strong associations to the prognostic genes. TTN, TP53, and MUC16 exhibited the highest mutation rates in both risk groups. Drug sensitivity analysis highlighted AZD.0530, CCT007093, DMOG, JNJ.26854165, and LFM.A13 as promising therapeutic candidates. ERCC6L is located on chromosome X, while MYB is located on chromosome 6. Gene-gene interaction network analysis revealed interactions between prognostic genes and other key genes. In both datasets, expression of prognostic genes was significantly higher in the GC cohort. CONCLUSION: This study identified ERCC6L and MYB as key prognostic genes, facilitating the development of a risk model that offers novel insights into potential therapeutic strategies for GC.

摘要

背景:胃癌(GC)的进展与巨噬细胞极化和蛋白质乳酰化密切相关;然而,其潜在机制仍知之甚少。本研究旨在通过转录组分析阐明GC的分子机制。 方法:通过将差异表达基因与与蛋白质乳酰化和巨噬细胞极化相关的关键模块基因进行交叉,鉴定候选基因。进行蛋白质-蛋白质相互作用分析以揭示相互作用基因。使用单变量Cox回归和机器学习技术确定预后基因,并通过训练和验证数据集评估模型准确性。此外,对高风险和低风险组进行了富集分析、免疫浸润分析、基因突变分析和药物敏感性评估。还进行了预后基因的染色体定位、基因-基因相互作用网络分析和表达验证。 结果:通过综合分析,鉴定出两个预后基因ERCC6L和MYB作为预后的重要标志物。基于这些基因的风险模型准确预测了GC患者的生存率。富集分析显示肌肉肌球蛋白复合体和脂肪生成等途径与GC密切相关。免疫浸润分析确定了13种免疫细胞类型,包括与预后基因有强关联的单核细胞。TTN、TP53和MUC16在两个风险组中均表现出最高的突变率。药物敏感性分析突出了AZD.0530、CCT007093、DMOG、JNJ.26854165和LFM.A13作为有前景的治疗候选药物。ERCC6L位于X染色体上,而MYB位于6号染色体上。基因-基因相互作用网络分析揭示了预后基因与其他关键基因之间的相互作用。在两个数据集中,GC队列中预后基因的表达均显著更高。 结论:本研究确定ERCC6L和MYB为关键预后基因,有助于开发风险模型,为GC的潜在治疗策略提供新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/b91beabcbb36/fgene-16-1541489-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/6e15886acd09/fgene-16-1541489-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/91d86f6194ab/fgene-16-1541489-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/e111f7cfaac2/fgene-16-1541489-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/4cd2d30e42d7/fgene-16-1541489-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/f6f053363393/fgene-16-1541489-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/2bc9c07943a5/fgene-16-1541489-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/c8bb1defa0ad/fgene-16-1541489-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/0900e2ed6450/fgene-16-1541489-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/441caf234923/fgene-16-1541489-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/70ec0222ce4b/fgene-16-1541489-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/8cd75f4a7c03/fgene-16-1541489-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/b91beabcbb36/fgene-16-1541489-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/6e15886acd09/fgene-16-1541489-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/91d86f6194ab/fgene-16-1541489-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/e111f7cfaac2/fgene-16-1541489-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/4cd2d30e42d7/fgene-16-1541489-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/f6f053363393/fgene-16-1541489-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/2bc9c07943a5/fgene-16-1541489-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/c8bb1defa0ad/fgene-16-1541489-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/0900e2ed6450/fgene-16-1541489-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/441caf234923/fgene-16-1541489-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/70ec0222ce4b/fgene-16-1541489-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/8cd75f4a7c03/fgene-16-1541489-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/12263385/b91beabcbb36/fgene-16-1541489-g012.jpg

相似文献

[1]
Prognostic and tumor microenvironmental features of gastric cancer revealed by macrophage polarization and protein lactylation-related genes.

Front Genet. 2025-7-2

[2]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[3]
Comprehensive pan-cancer analysis reveals NTN1 as an immune infiltrate risk factor and its potential prognostic value in SKCM.

Sci Rep. 2025-1-25

[4]
A novel copper-induced cell death-related lncRNA prognostic signature associated with immune infiltration and clinical value in gastric cancer.

J Cancer Res Clin Oncol. 2023-9

[5]
Identification of biomarkers for Laryngeal squamous cell carcinoma through Mendelian randomization and integrated bioinformatics analysis.

Discov Oncol. 2025-7-18

[6]
Integrated proteomics and transcriptomics analysis reveals key regulatory genes between ER-positive/PR-positive and ER-positive/PR-negative breast cancer.

BMC Cancer. 2025-7-1

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
A novel, rapid, and practical prognostic model for sepsis patients based on dysregulated immune cell lactylation.

Front Immunol. 2025-6-19

[9]
Construction and validation of a lipid metabolism-related genes prognostic signature for skin cutaneous melanoma.

Biochem Biophys Res Commun. 2025-5-29

[10]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

本文引用的文献

[1]
Research progress on the regulatory role of lactate and lactylation in tumor microenvironment.

Biochim Biophys Acta Rev Cancer. 2025-7

[2]
The mechanisms and effects of lactylation modification in different kinds of cancers.

Discov Oncol. 2025-4-18

[3]
Lactylation-related gene signature accurately predicts prognosis and immunotherapy response in gastric cancer.

Front Oncol. 2024-11-28

[4]
Anti-Proliferation Effect of Nodosin on Hepatocellular Carcinoma Cells Via The ERCC6L/PI3K/AKT/Axis.

J Biochem Mol Toxicol. 2024-11

[5]
Lactylation in cancer: Current understanding and challenges.

Cancer Cell. 2024-11-11

[6]
Effect of connexin 43 in LPS/IL-4-induced macrophage M1/M2 polarization: An observational study.

Medicine (Baltimore). 2024-4-12

[7]
Identification of molecular subtypes and a prognostic signature based on m6A/m5C/m1A-related genes in lung adenocarcinoma.

Sci Rep. 2024-3-30

[8]
Effects of folate-chicory acid liposome on macrophage polarization and TLR4/NF-κB signaling pathway in ulcerative colitis mouse.

Phytomedicine. 2024-6

[9]
Histone lactylation: from tumor lactate metabolism to epigenetic regulation.

Int J Biol Sci. 2024

[10]
H3K18 lactylation-mediated VCAM1 expression promotes gastric cancer progression and metastasis via AKT-mTOR-CXCL1 axis.

Biochem Pharmacol. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索