Liu Lifang, Feng Youyou
Pulmonary Function Room of Zhejiang Hospital Hangzhou 310000, Zhejiang, China.
Am J Transl Res. 2025 Jun 15;17(6):4198-4212. doi: 10.62347/OPRX1666. eCollection 2025.
Pediatric asthma is a chronic and heterogeneous respiratory disease that poses considerable challenges in predicting exacerbations and long-term outcomes. This study aimed to enhance prognostic prediction for pediatric asthma by integrating serological markers with pulmonary function parameters.
A retrospective analysis was conducted involving 318 pediatric asthma patients from one hospital, with external validation performed on an additional cohort of 283 patients from another institution. Serological markers, including white blood cell (WBC) count, eosinophil percentage, interleukins, 14-3-3β protein, and total immunoglobulin E (IgE), were measured alongside pulmonary function indicators such as forced expiratory volume in one second (FEV1) and the FEV1/forced vital capacity (FVC) ratio. Statistical analyses included correlation testing, logistic regression analysis, and receiver operating characteristic (ROC) curve analysis to develop and validate the prognostic model.
Elevated WBC count, eosinophil percentage, 14-3-3β protein, and total IgE levels were significantly associated with poorer prognosis. Among interleukin profiles, increased interleukin-4 (IL-4) and interleukin-7 (IL-7) levels, along with reduced interleukin-10 (IL-10), were linked to unfavorable outcomes. In contrast, higher FEV1 and FVC values correlated with better outcomes. The integrated predictive model demonstrated strong predictive performance, with an area under the curve (AUC) of 0.818 in the modeling cohort and 0.874 in the validation cohort.
The integration of serological biomarkers and pulmonary function indices provides a robust framework for predicting prognosis in pediatric asthma, supporting the development of individualized management strategies.
儿童哮喘是一种慢性异质性呼吸道疾病,在预测病情加重和长期预后方面面临巨大挑战。本研究旨在通过整合血清学标志物和肺功能参数来加强对儿童哮喘的预后预测。
对一家医院的318例儿童哮喘患者进行回顾性分析,并在另一家机构的283例患者组成的额外队列中进行外部验证。测量血清学标志物,包括白细胞(WBC)计数、嗜酸性粒细胞百分比、白细胞介素、14-3-3β蛋白和总免疫球蛋白E(IgE),同时测量肺功能指标,如一秒用力呼气容积(FEV1)和FEV1/用力肺活量(FVC)比值。统计分析包括相关性检验、逻辑回归分析和受试者工作特征(ROC)曲线分析,以建立和验证预后模型。
白细胞计数、嗜酸性粒细胞百分比、14-3-3β蛋白和总IgE水平升高与较差的预后显著相关。在白细胞介素谱中,白细胞介素-4(IL-4)和白细胞介素-7(IL-7)水平升高以及白细胞介素-10(IL-10)降低与不良预后相关。相比之下,较高的FEV1和FVC值与较好的预后相关。综合预测模型显示出强大的预测性能,在建模队列中的曲线下面积(AUC)为0.818,在验证队列中为0.874。
血清学生物标志物和肺功能指标的整合为预测儿童哮喘预后提供了一个强大的框架,支持个性化管理策略的制定。