Suppr超能文献

人工智能辅助的美容手术风险分层:一项前瞻性观察研究。

Artificial Intelligence-assisted Risk Stratification in Aesthetic Surgery: A Prospective Observational Study.

作者信息

Bukret Williams E

机构信息

From Private Practice, Bukret Plastic Surgery, Buenos Aires, Argentina.

出版信息

Plast Reconstr Surg Glob Open. 2025 Jul 16;13(7):e6948. doi: 10.1097/GOX.0000000000006948. eCollection 2025 Jul.

Abstract

BACKGROUND

Enhancing patient safety and minimizing complications are critical objectives in aesthetic surgery. In 2021, the author developed and validated an artificial intelligence (AI)-assisted risk stratification model to predict complications and support clinical decision-making. This study aimed to evaluate the clinical impact of surgical risk stratification on patient outcomes.

METHODS

A prospective observational study was conducted from January 2021 to May 2024 to assess 3347 patients, using an AI model. The patients were stratified into high-, moderate-, and low-risk groups and received tailored recommendations. A total of 74 patients proceeded with surgery, and their outcomes were analyzed. Statistical analyses included logistic regression and correlation tests ( < 0.05).

RESULTS

Of the 3347 patients assessed, 18.55% were high-risk, 30.56% were moderate-risk, and 50.88% were low-risk patients. Among the 74 patients who underwent surgery, 7 (9.46%) developed 11 complications, with the high-risk group showing a relative risk of 6.73. Logistic regression confirmed that age and Caprini score were independent risk factors, whereas body mass index and smoking showed no statistical association with complications, likely because of effective preoperative risk mitigation, including weight optimization and smoking cessation protocols enforced by the AI model.

CONCLUSIONS

This study demonstrated that AI-assisted risk stratification effectively identifies risk factors in aesthetic surgery, enabling personalized preoperative recommendations to mitigate complications. AI can enhance patient safety and surgical outcomes by enabling systematic risk stratification. Integrating AI into surgical planning optimizes patient selection and supports its implementation in clinical decision-making.

摘要

背景

提高患者安全性并将并发症降至最低是美容手术的关键目标。2021年,作者开发并验证了一种人工智能(AI)辅助风险分层模型,用于预测并发症并支持临床决策。本研究旨在评估手术风险分层对患者结局的临床影响。

方法

2021年1月至2024年5月进行了一项前瞻性观察性研究,使用人工智能模型评估3347例患者。患者被分为高风险、中风险和低风险组,并接受了量身定制的建议。共有74例患者进行了手术,并对其结局进行了分析。统计分析包括逻辑回归和相关性检验(<0.05)。

结果

在评估的3347例患者中,18.55%为高风险患者,30.56%为中风险患者,50.88%为低风险患者。在接受手术的74例患者中,7例(9.46%)出现了11种并发症,高风险组的相对风险为6.73。逻辑回归证实年龄和卡普里尼评分是独立的风险因素,而体重指数和吸烟与并发症无统计学关联,这可能是由于有效的术前风险缓解措施,包括人工智能模型实施的体重优化和戒烟方案。

结论

本研究表明,人工智能辅助风险分层有效地识别了美容手术中的风险因素,能够提供个性化的术前建议以减轻并发症。人工智能通过实现系统的风险分层,可以提高患者安全性和手术结局。将人工智能整合到手术规划中可优化患者选择,并支持其在临床决策中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验