Suppr超能文献

人工智能在骨折检测中的应用:系统评价和荟萃分析。

Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis.

机构信息

From the Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Old Road Headington, Oxford OX3 7LD, UK (R.Y.L.K., C.H., M.S., G.S.C., D.F.); Department of Plastic Surgery, John Radcliffe Hospital, Oxford, UK (T.A.C., A.F.); Department of Vascular Surgery, Royal Berkshire Hospital, Reading, UK (B.J.); Department of Plastic Surgery, Stoke Mandeville Hospital, Aylesbury, Buckinghamshire UK (D.C.); and UK EQUATOR Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Centre for Statistics in Medicine, Oxford UK (G.S.C.).

出版信息

Radiology. 2022 Jul;304(1):50-62. doi: 10.1148/radiol.211785. Epub 2022 Mar 29.

Abstract

Background Patients with fractures are a common emergency presentation and may be misdiagnosed at radiologic imaging. An increasing number of studies apply artificial intelligence (AI) techniques to fracture detection as an adjunct to clinician diagnosis. Purpose To perform a systematic review and meta-analysis comparing the diagnostic performance in fracture detection between AI and clinicians in peer-reviewed publications and the gray literature (ie, articles published on preprint repositories). Materials and Methods A search of multiple electronic databases between January 2018 and July 2020 (updated June 2021) was performed that included any primary research studies that developed and/or validated AI for the purposes of fracture detection at any imaging modality and excluded studies that evaluated image segmentation algorithms. Meta-analysis with a hierarchical model to calculate pooled sensitivity and specificity was used. Risk of bias was assessed by using a modified Prediction Model Study Risk of Bias Assessment Tool, or PROBAST, checklist. Results Included for analysis were 42 studies, with 115 contingency tables extracted from 32 studies (55 061 images). Thirty-seven studies identified fractures on radiographs and five studies identified fractures on CT images. For internal validation test sets, the pooled sensitivity was 92% (95% CI: 88, 93) for AI and 91% (95% CI: 85, 95) for clinicians, and the pooled specificity was 91% (95% CI: 88, 93) for AI and 92% (95% CI: 89, 92) for clinicians. For external validation test sets, the pooled sensitivity was 91% (95% CI: 84, 95) for AI and 94% (95% CI: 90, 96) for clinicians, and the pooled specificity was 91% (95% CI: 81, 95) for AI and 94% (95% CI: 91, 95) for clinicians. There were no statistically significant differences between clinician and AI performance. There were 22 of 42 (52%) studies that were judged to have high risk of bias. Meta-regression identified multiple sources of heterogeneity in the data, including risk of bias and fracture type. Conclusion Artificial intelligence (AI) and clinicians had comparable reported diagnostic performance in fracture detection, suggesting that AI technology holds promise as a diagnostic adjunct in future clinical practice. Clinical trial registration no. CRD42020186641 © RSNA, 2022 See also the editorial by Cohen and McInnes in this issue.

摘要

背景 骨折患者是常见的急诊表现,在影像学检查中可能会误诊。越来越多的研究将人工智能(AI)技术应用于骨折检测,作为临床医生诊断的辅助手段。目的 对同行评审文献和灰色文献(即在预印本存储库上发表的文章)中 AI 与临床医生在骨折检测方面的诊断性能进行系统评价和荟萃分析。材料与方法 2018 年 1 月至 2020 年 7 月(2021 年 6 月更新)期间,对多个电子数据库进行了检索,纳入了任何开发和/或验证 AI 用于任何成像方式骨折检测的原始研究,并排除了评估图像分割算法的研究。使用分层模型进行荟萃分析,以计算汇总的敏感性和特异性。使用改良的预测模型研究风险偏倚评估工具(PROBAST)清单评估风险偏倚。结果 共纳入 42 项研究,其中 32 项研究提取了 115 个列联表(55061 张图像)。37 项研究在 X 线片上识别骨折,5 项研究在 CT 图像上识别骨折。对于内部验证测试集,AI 的汇总敏感性为 92%(95%CI:88,93),临床医生的汇总敏感性为 91%(95%CI:85,95),AI 的汇总特异性为 91%(95%CI:88,93),临床医生的汇总特异性为 92%(95%CI:89,92)。对于外部验证测试集,AI 的汇总敏感性为 91%(95%CI:84,95),临床医生的汇总敏感性为 94%(95%CI:90,96),AI 的汇总特异性为 91%(95%CI:81,95),临床医生的汇总特异性为 94%(95%CI:91,95)。AI 和临床医生的表现没有统计学差异。42 项研究中有 22 项(52%)被认为存在高偏倚风险。元回归确定了数据中存在多种异质性来源,包括偏倚风险和骨折类型。结论 AI 和临床医生在骨折检测方面的报告诊断性能相当,这表明 AI 技术有望成为未来临床实践中的一种诊断辅助手段。临床试验注册号 CRD42020186641 © RSNA,2022 也请参见本期 Cohen 和 McInnes 的社论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验