Suppr超能文献

失语症语言缺陷的脑网络相关性的偏最小二乘多模态分析

Partial least squares multimodal analysis of brain network correlates of language deficits in aphasia.

作者信息

Kristinsson Sigfus, den Ouden Dirk B, Rorden Christopher, Newman-Norlund Roger, Johnson Lisa, Wilmskoetter Janina, Gleichgerrcht Ezequiel, Hillis Argye E, Hickok Gregory, Fridriksson Julius, Bonilha Leonardo

机构信息

Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA.

Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.

出版信息

Brain Commun. 2025 Jun 19;7(4):fcaf246. doi: 10.1093/braincomms/fcaf246. eCollection 2025.

Abstract

Lesion-symptom mapping techniques are essential to determine brain regions critical for language functions. However, high collinearity in neuroimaging and behavioural data remains a challenge for distinguishing neural substrates supporting multiple language domains (shared variance) and those subserving specific language functions (unique variance). Here, we employed a novel approach to multimodal lesion-symptom mapping using multivariate partial least squares regression to delineate the latent structure of lesion-behavioural mapping in aphasia and decompose the shared and unique neural determinants of language impairments. A total of 86 participants with chronic (>12-month post-stroke) aphasia after left hemisphere strokes were examined. Language impairment was assessed with the Western Aphasia Battery-Revised, and brain damage was defined by multimodal neuroimaging (including lesion characteristics, structural and functional connectivity, volumetric measures and functional activity). Neuroimaging modality-specific models were constructed to evaluate the shared versus unique lesion anatomy associated with performance across Western Aphasia Battery-Revised subtests: auditory comprehension, naming, repetition and spontaneous speech. Model accuracy was validated using leave-one-out cross-validation. Latent decomposition revealed that 50% of the covariance between neuroimaging data and language performance was explained by two to six latent variables across models. The spontaneous speech subtest emerged as the most influential language measure across all models, with damage to regions surrounding the perisylvian fissure accounting for the largest amount of shared variance across Western Aphasia Battery-Revised subtests. Critically, the highest-ranking features represented in the latent variable models yielded moderately accurate simultaneous prediction for all language measures (highest : auditory comprehension = 0.45; naming = 0.39; repetition = 0.38; spontaneous speech = 0.42), suggesting that clinically salient language impairments largely reflect damage to shared anatomical networks. Projection of subtest scores onto latent variables revealed that integrity of distributed left and right cortical and subcortical regions uniquely accounted for 5.0-27.9% of residual variance across subtests, with auditory comprehension involving the most extensive network of unique brain regions. These results highlight that dissociating shared versus unique lesion-symptom associations is important for understanding the neural basis of aphasia. Shared lesion anatomy involving perisylvian regions broadly impacts multiple language domains, while distributed regions uniquely explain deficits in specific language domains (e.g. auditory comprehension). These insights improve our understanding of post-stroke aphasia and facilitate future development of more precise, personalized treatment strategies based on each individual's neuroanatomy.

摘要

病灶-症状映射技术对于确定语言功能的关键脑区至关重要。然而,神经影像学和行为数据中的高共线性仍然是一个挑战,难以区分支持多种语言领域的神经基质(共享方差)和那些服务于特定语言功能的神经基质(独特方差)。在这里,我们采用了一种新颖的多模态病灶-症状映射方法,使用多元偏最小二乘回归来描绘失语症中病灶-行为映射的潜在结构,并分解语言障碍的共享和独特神经决定因素。共检查了86名左半球中风后患有慢性(中风后>12个月)失语症的参与者。使用西方失语症成套测验修订版评估语言障碍,并通过多模态神经影像学(包括病灶特征、结构和功能连接、体积测量和功能活动)定义脑损伤。构建了特定于神经影像学模态的模型,以评估与西方失语症成套测验修订版子测验(听觉理解、命名、复述和自发言语)的表现相关的共享与独特病灶解剖结构。使用留一法交叉验证来验证模型准确性。潜在分解显示,神经影像学数据与语言表现之间50%的协方差由各模型中的两到六个潜在变量解释。自发言语子测验在所有模型中成为最具影响力的语言测量指标,大脑外侧裂周围区域的损伤在西方失语症成套测验修订版子测验中占最大量的共享方差。至关重要的是,潜在变量模型中排名最高的特征对所有语言测量指标产生了中等准确程度的同时预测(最高:听觉理解=0.45;命名=0.39;复述=0.38;自发言语=0.42),这表明临床上显著的语言障碍在很大程度上反映了对共享解剖网络的损伤。将子测验分数投影到潜在变量上显示,左右皮质和皮质下区域的完整性分别独特地占各子测验剩余方差的5.0 - 27.9%,其中听觉理解涉及最广泛的独特脑区网络。这些结果突出表明,区分共享与独特的病灶-症状关联对于理解失语症的神经基础很重要。涉及外侧裂周围区域的共享病灶解剖结构广泛影响多个语言领域,而分布区域独特地解释了特定语言领域(如听觉理解)的缺陷。这些见解增进了我们对中风后失语症的理解,并有助于未来基于个体神经解剖结构开发更精确、个性化的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf9c/12264888/61437887049b/fcaf246_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验