基于机器学习的慢性失语症语言预后的多模态预测。

Machine learning-based multimodal prediction of language outcomes in chronic aphasia.

机构信息

Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, South Carolina, USA.

Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA.

出版信息

Hum Brain Mapp. 2021 Apr 15;42(6):1682-1698. doi: 10.1002/hbm.25321. Epub 2020 Dec 30.

Abstract

Recent studies have combined multiple neuroimaging modalities to gain further understanding of the neurobiological substrates of aphasia. Following this line of work, the current study uses machine learning approaches to predict aphasia severity and specific language measures based on a multimodal neuroimaging dataset. A total of 116 individuals with chronic left-hemisphere stroke were included in the study. Neuroimaging data included task-based functional magnetic resonance imaging (fMRI), diffusion-based fractional anisotropy (FA)-values, cerebral blood flow (CBF), and lesion-load data. The Western Aphasia Battery was used to measure aphasia severity and specific language functions. As a primary analysis, we constructed support vector regression (SVR) models predicting language measures based on (i) each neuroimaging modality separately, (ii) lesion volume alone, and (iii) a combination of all modalities. Prediction accuracy across models was subsequently statistically compared. Prediction accuracy across modalities and language measures varied substantially (predicted vs. empirical correlation range: r = .00-.67). The multimodal prediction model yielded the most accurate prediction in all cases (r = .53-.67). Statistical superiority in favor of the multimodal model was achieved in 28/30 model comparisons (p-value range: <.001-.046). Our results indicate that different neuroimaging modalities carry complementary information that can be integrated to more accurately depict how brain damage and remaining functionality of intact brain tissue translate into language function in aphasia.

摘要

最近的研究结合了多种神经影像学模式,以进一步了解失语症的神经生物学基础。沿着这条研究思路,本研究使用机器学习方法,根据多模态神经影像学数据集,预测失语症严重程度和特定语言指标。共有 116 名慢性左侧半球卒中患者纳入本研究。神经影像学数据包括任务型功能磁共振成像(fMRI)、基于扩散的各向异性分数(FA)值、脑血流(CBF)和病变负荷数据。使用西方失语症成套测验来衡量失语症严重程度和特定语言功能。作为主要分析,我们构建了支持向量回归(SVR)模型,根据以下三种情况预测语言指标:(i)每种神经影像学模式单独预测,(ii)仅预测病变体积,以及(iii)所有模式的组合预测。然后比较了不同模型的预测准确性。各种模式和语言指标的预测准确性差异很大(预测与经验相关性范围:r = 0.00-0.67)。在所有情况下,多模态预测模型的预测结果最准确(r = 0.53-0.67)。在 30 次模型比较中的 28 次中,多模态模型具有统计学优势(p 值范围:<0.001-0.046)。我们的结果表明,不同的神经影像学模式携带互补信息,可以整合这些信息以更准确地描绘大脑损伤和未受损脑组织的剩余功能如何转化为失语症中的语言功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f508/7978124/5530942ad923/HBM-42-1682-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索