Huang Lanxiang, Deng Renchuan, Wang Xiang, Wang Qin, Liang Yuan
School of New Energy Materials and Chemistry, Leshan Normal University Leshan Sichuan 614000 China
West Silicon Photovoltaic New Energy Industry Technology Research Institute Leshan Sichuan 614000 China.
RSC Adv. 2025 Jul 15;15(31):24975-24985. doi: 10.1039/d5ra01799h.
Ammonia serves as a hydrogen energy carrier and a renewable, zero-carbon fuel alternative that is safely transportable. The electrochemical catalytic reduction of N to NH in aqueous electrolytes at ambient temperature and pressure (eNRR) using electricity generated from renewable energy sources such as solar and wind power can provide an environmentally friendly approach. To effectively suppress the occurrence of hydrogen evolution side reactions, it is necessary to design and synthesize catalysts with high selectivity for N adsorption. Owing to the ability of transition metals with unoccupied d orbitals to significantly promote the adsorption of N molecules and the activation of inert bonds, researchers have explored manganese-oxide catalysts through both experimental and theoretical studies. However, manganese oxides are semiconductor materials with poor conductivity. To solve this problem, the TiCT MXene material can be introduced as a carrier for manganese oxide particles. In this study, the TiC@MnO composite was used as an electrocatalyst for ammonia synthesis under ambient conditions using a simple method. Benefiting from the synergistic catalytic effect of MXene and MnO, the composite exhibits excellent catalytic performance for ammonia synthesis, with an NH yield rate of 53.7 μg h mg and satisfactory FE of 10.4% at -0.6 V ( RHE) under ambient conditions. The composite catalyst exhibits excellent stability, durability, and selectivity, with outstanding synergistic effects, surpassing most reported NRR electrocatalysts. This simple and versatile strategy may offer researchers inspiration for rationally designing highly efficient NRR electrocatalysts.
氨作为一种氢能载体和可再生、零碳的可安全运输的燃料替代品。在常温常压下,利用太阳能和风能等可再生能源产生的电力,在水性电解质中通过电化学催化将N还原为NH₃(eNRR),这可以提供一种环保的方法。为了有效抑制析氢副反应的发生,有必要设计和合成对N吸附具有高选择性的催化剂。由于具有未占据d轨道的过渡金属能够显著促进N分子的吸附和惰性键的活化,研究人员通过实验和理论研究探索了锰氧化物催化剂。然而,锰氧化物是导电性较差的半导体材料。为了解决这个问题,可以引入Ti₃C₂Tₓ MXene材料作为锰氧化物颗粒的载体。在本研究中,采用简单方法将TiC@MnO复合材料用作常温条件下氨合成的电催化剂。受益于MXene和MnO的协同催化作用,该复合材料在常温条件下对氨合成表现出优异的催化性能,在-0.6 V(RHE)下NH₃产率为53.7 μg h⁻¹ mg⁻¹,法拉第效率(FE)为10.4%。该复合催化剂表现出优异的稳定性、耐久性和选择性,具有出色的协同效应,超过了大多数报道的NRR电催化剂。这种简单通用的策略可能为合理设计高效NRR电催化剂的研究人员提供灵感。