Suppr超能文献

通过对MS/MS谱图中的噪声信号进行滤波来提高谱图相似度和分子网络可靠性

Improving Spectral Similarity and Molecular Network Reliability through Noise Signal Filtering in MS/MS Spectra.

作者信息

Dalla Valle Nicola, Garcia-Aloy Mar, Robatscher Peter, Franceschi Pietro, Oberhuber Michael

机构信息

University of Trento, Trento, TN 38100, Italy.

Research Innovation Centre, Fondazione Edmund Mach, San Michele a/A, TN 38010, Italy.

出版信息

Anal Chem. 2025 Jul 29;97(29):15873-15882. doi: 10.1021/acs.analchem.5c02109. Epub 2025 Jul 17.

Abstract

In mass spectrometry, fragmentation spectra play a central role in compound identification. However, noise in MS/MS spectra can significantly impact similarity scores and molecular network (MN) reliability, leading to inaccurate compound annotation in untargeted metabolomics. This work investigates the influence of noise on MS/MS similarity scores and molecular network structure. Noise elimination increased similarity scores for homologous spectra, enhancing match affordability. In MNs, effective noise management improved network structure, resulting in more interpretable networks with fewer edges and enhanced clustering, decreasing false-positive connections. To quantitatively assess these improvements, a minimum spanning tree (MST) analysis was performed, revealing denser regions in the denoised MNs. An increasing cutoff of noise threshold can lead to an overlay between two or more different compound spectra. A data-specific workflow was developed to identify the optimal threshold for denoising, balancing spectra quality and network integrity during noise elimination, by incorporating statistics calculated on the distribution of the MST distances and the number of fragment ions, which could be explained by an in-silico fragmentation algorithm. Finally, a faster-tailored denoising method, based solely on the intensity of individual spectral ions, demonstrated performance comparable to the previously cited fixed threshold approaches.

摘要

在质谱分析中,碎裂谱在化合物鉴定中起着核心作用。然而,二级质谱(MS/MS)谱中的噪声会显著影响相似度得分和分子网络(MN)的可靠性,导致非靶向代谢组学中化合物注释不准确。本研究探讨了噪声对MS/MS相似度得分和分子网络结构的影响。噪声消除提高了同源谱的相似度得分,增强了匹配的可接受性。在分子网络中,有效的噪声管理改善了网络结构,使得网络结构更易于解释,边数减少,聚类增强,假阳性连接减少。为了定量评估这些改进,进行了最小生成树(MST)分析,结果显示去噪后的分子网络中存在更密集的区域。噪声阈值截止值的增加可能导致两个或更多不同化合物谱的重叠。通过纳入基于MST距离分布和碎片离子数量计算的统计数据,开发了一种针对特定数据的工作流程,以确定去噪的最佳阈值,在噪声消除过程中平衡谱质量和网络完整性,这可以通过计算机模拟碎裂算法来解释。最后,一种仅基于单个谱离子强度的更快的定制去噪方法,其性能与先前引用的固定阈值方法相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1902/12311886/fb388fc6f088/ac5c02109_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验