Suppr超能文献

使用胡津加方程将基于投影的嵌入技术扩展到开壳层体系。

Extending the Projection-Based Embedding Technique to Open-Shell Systems Using the Huzinaga Equation.

作者信息

Hégely Bence, Kállay Mihály

机构信息

Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.

HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary.

出版信息

J Chem Theory Comput. 2025 Aug 12;21(15):7394-7418. doi: 10.1021/acs.jctc.5c00687. Epub 2025 Jul 17.

Abstract

In this work, we present an approach for the embedding of wave function theory (WFT) and density functional theory (DFT) methods in a lower-level density functional approximation using the projection-based embedding (PbE) technique for open-shell systems. Our method is based on the Huzinaga equation, which is implemented in both spin-restricted and spin-unrestricted forms. While the unrestricted PbE approach has been previously reported in the literature and follows naturally from the theory for closed-shell systems, the restricted formulation required the development of a new theory, building on earlier work by Roothaan (, , , 179) as well as Shaik and Filatov (, , , 429). Our implementation allows for the use of arbitrary combinations of restricted and unrestricted wave functions for the high- and low-level methods, which can be advantageous for the full-system low-level calculations. The various spin-restricted and unrestricted wave function-based PbE schemes are thoroughly tested, examining how the error in reaction energies depends on the size of the subsystem treated at the high level. Additionally, we compared the performance of PbE to that of other focused multilevel approaches, such as vacuum embedding, "our-own n-layered integrated molecular orbital and molecular mechanics" (ONIOM), and multilevel local correlation (MLC). The results showed that MLC performed the best among the tested methods, while only those PbE and ONIOM variants were proved to be competitive whose low-level methods employed at most a generalized gradient approximation (GGA). It is not straightforward to determine whether PbE or ONIOM is generally more advantageous: the latter can sometimes be more accurate and computationally cheaper, while PbE offers greater robustness and the possibility of systematic improvement.

摘要

在本工作中,我们提出了一种使用基于投影的嵌入(PbE)技术,将波函数理论(WFT)和密度泛函理论(DFT)方法嵌入到较低级密度泛函近似中的方法,用于开壳层体系。我们的方法基于Huzinaga方程,该方程以自旋限制和自旋非限制形式实现。虽然文献中先前已报道了非限制的PbE方法,且它自然地源于闭壳层体系的理论,但限制形式需要在Roothaan(,,,179)以及Shaik和Filatov(,,,429)早期工作的基础上发展新理论。我们的实现允许在高级和低级方法中使用限制和非限制波函数的任意组合,这对于全体系低级计算可能是有利的。对各种基于自旋限制和非限制波函数的PbE方案进行了全面测试,研究反应能量误差如何取决于高级处理的子体系大小。此外,我们将PbE的性能与其他聚焦多水平方法的性能进行了比较,如真空嵌入、“我们自己的n层集成分子轨道和分子力学”(ONIOM)以及多水平局部相关(MLC)。结果表明,在测试方法中MLC表现最佳,而只有那些低级方法最多采用广义梯度近似(GGA)的PbE和ONIOM变体被证明具有竞争力。确定PbE或ONIOM通常哪个更具优势并不简单:后者有时可能更准确且计算成本更低,而PbE具有更高的稳健性以及系统改进的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42db/12355723/a76f0d4d9d2b/ct5c00687_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验