Suppr超能文献

用于热管理的界面网络驱动的可延展、自修复且高导热界面材料

Malleable, Self-Healing, and Highly Thermally Conductive Interface Material Enabled by Interfacial Networks for Thermal Management.

作者信息

Li Chengjie, Ma Shichao, Han Xu, Sun Ye, Li Chunlin, Zheng Kai, Xin Yumeng, Li Ruiguang

机构信息

School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China.

Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43655-43668. doi: 10.1021/acsami.5c09314. Epub 2025 Jul 17.

Abstract

Heat dissipation has become a critical issue for the development of the microelectronic industry. Thermal interface materials (TIMs) play an important role in the thermal management of electronic devices, facilitating efficient heat transfer between components and heat sinks. However, the contradiction between high thermal conductivity, electrical insulation, and self-healing function is a bottleneck that restricts multifunctional applications of elastic TIMs. Here, self-healing and recyclable natural rubber-based thermal interface materials with high thermal conductivity and good mechanical properties were designed by a facile method. Supramolecular metal-ligand coordination and hydrogen bonding networks were constructed in the composite system. The mechanical strength of the as-prepared sample reached 2.80 MPa, the elongation at break exceeded 1000%, and the fracture toughness reached 14.59 MJ/m. Furthermore, the nanocomposites achieved closed-loop mechanical and chemical recycling and good self-healing ability at room temperature. The thermal conductivity increased to 1.217 W/mK, 5.7 times higher than that of pristine NR due to the enhanced interfacial networks. The nanocomposites could be used as TIMs for LED chip cooling due to their electrical insulation, thermal stability, and faster temperature response, exhibiting good heat dissipation capacity. This work provides valuable insights into the design of TIMs and multifunctional applications in the thermal control and management field.

摘要

散热已成为微电子工业发展的关键问题。热界面材料(TIMs)在电子设备的热管理中起着重要作用,有助于组件与散热器之间的高效热传递。然而,高导热性、电绝缘性和自修复功能之间的矛盾是限制弹性TIMs多功能应用的瓶颈。在此,通过一种简便方法设计了具有高导热性和良好机械性能的自修复且可回收的天然橡胶基热界面材料。在复合体系中构建了超分子金属-配体配位和氢键网络。所制备样品的机械强度达到2.80 MPa,断裂伸长率超过1000%,断裂韧性达到14.59 MJ/m³。此外,该纳米复合材料实现了闭环机械和化学回收以及在室温下良好的自修复能力。由于界面网络增强,热导率提高到1.217 W/mK,比原始天然橡胶高5.7倍。该纳米复合材料因其电绝缘性、热稳定性和更快的温度响应,可作为LED芯片散热的热界面材料,展现出良好的散热能力。这项工作为热界面材料的设计以及热控制和管理领域的多功能应用提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验