Suppr超能文献

scPDA:基于液滴的单细胞数据中的蛋白质表达去噪

scPDA: denoising protein expression in droplet-based single-cell data.

作者信息

Zhu Ouyang, Li Jun

机构信息

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA.

出版信息

Genome Biol. 2025 Jul 17;26(1):208. doi: 10.1186/s13059-025-03686-4.

Abstract

Droplet-based profiling techniques such as CITE-seq are often contaminated by technical noise. Current computational denoising methods have serious limitations, including a strong reliance on often-unavailable empty droplets or null controls and insufficient efficiency due to ignoring protein-protein interactions. Here, we introduce scPDA, a probabilistic model that employs a variational autoencoder to achieve high computational efficiency. scPDA eliminates the use of empty droplets and shares information across proteins to increase denoising efficiency. Compared to currently available methods, scPDA substantially improves the efficiency of gating-strategy-based cell-type identification, marking a clear advancement in computational denoising of the protein modality.

摘要

基于微滴的分析技术,如细胞索引转录组及表位测序(CITE-seq),常常受到技术噪声的干扰。当前的计算去噪方法存在严重局限性,包括严重依赖通常无法获得的空微滴或阴性对照,以及由于忽略蛋白质-蛋白质相互作用而导致的效率不足。在此,我们介绍了单细胞概率去噪分析(scPDA),这是一种采用变分自编码器以实现高计算效率的概率模型。scPDA无需使用空微滴,并在蛋白质间共享信息以提高去噪效率。与现有方法相比,scPDA显著提高了基于门控策略的细胞类型识别效率,标志着蛋白质模态计算去噪方面的明显进步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验