Suppr超能文献

植物育种中的基因组选择:塑造二十年进展的关键因素。

Genomic selection in plant breeding: Key factors shaping two decades of progress.

机构信息

Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.

Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden; Lantmännen Lantbruk, Svalöv, Sweden.

出版信息

Mol Plant. 2024 Apr 1;17(4):552-578. doi: 10.1016/j.molp.2024.03.007. Epub 2024 Mar 12.

Abstract

Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.

摘要

基因组选择,即将基因组预测 (GP) 模型应用于选择候选个体,在过去二十年中得到了显著发展,有效地加速了植物育种的遗传进展。本文全面概述了这一时期影响植物育种中 GP 的关键因素。我们深入研究了训练群体大小和遗传多样性的关键作用,以及它们与育种群体的关系,以确定 GP 的准确性。特别强调了优化训练群体大小。我们探讨了其益处以及超过最佳大小的收益递减。在通过当前优化算法在资源分配和最大化预测准确性之间进行平衡的同时考虑到这一点。单核苷酸多态性的密度和分布、连锁不平衡的程度、遗传复杂性、性状遗传力、统计机器学习方法和非加性效应是其他重要因素。我们以小麦、玉米和马铃薯为例,总结了这些因素对各种性状 GP 准确性的影响。寻求 GP 的高精度——使用皮尔逊相关系数作为度量标准时理论上可以达到这一精度——是一个活跃的研究领域,但对于各种性状来说,这一目标远未达到最优。我们假设,随着基因型和表型数据集的超大规模,有效的训练群体优化方法以及来自其他组学方法(转录组学、代谢组学和蛋白质组学)的支持,加上深度学习算法,可以克服当前限制,实现尽可能高的预测准确性,使基因组选择成为植物育种的有效工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验