Suppr超能文献

整合分子标记和环境协变量,解析亚热带地区种植的水稻(L.)基因型与环境互作。

Integrating Molecular Markers and Environmental Covariates To Interpret Genotype by Environment Interaction in Rice ( L.) Grown in Subtropical Areas.

机构信息

Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca NY 14853.

Department of Agronomy, University of Wisconsin - Madison WI 53706.

出版信息

G3 (Bethesda). 2019 May 7;9(5):1519-1531. doi: 10.1534/g3.119.400064.

Abstract

Understanding the genetic and environmental basis of genotype × environment interaction (G×E) is of fundamental importance in plant breeding. If we consider G×E in the context of genotype × year interactions (G×Y), predicting which lines will have stable and superior performance across years is an important challenge for breeders. A better understanding of the factors that contribute to the overall grain yield and quality of rice ( L.) will lay the foundation for developing new breeding and selection strategies for combining high quality, with high yield. In this study, we used molecular marker data and environmental covariates (EC) simultaneously to predict rice yield, milling quality traits and plant height in untested environments (years), using both reaction norm models and partial least squares (PLS), in two rice breeding populations ( and ). We also sought to explain G×E by differential quantitative trait loci (QTL) expression in relation to EC. Our results showed that PLS models trained with both molecular markers and EC gave better prediction accuracies than reaction norm models when predicting future years. We also detected milling quality QTL that showed a differential expression conditional on humidity and solar radiation, providing insight for the main environmental factors affecting milling quality in subtropical and temperate rice growing areas.

摘要

了解基因型与环境互作(G×E)的遗传和环境基础,在植物育种中具有重要意义。如果我们将 G×E 置于基因型与年份互作(G×Y)的背景下考虑,预测哪些品系在多年间具有稳定和优异的表现,是育种者面临的一项重要挑战。更好地了解导致水稻( L.)整体产量和品质的因素,将为开发新的育种和选择策略奠定基础,以实现高产与优质的结合。在这项研究中,我们同时使用分子标记数据和环境协变量(EC),通过反应规范模型和偏最小二乘(PLS),在两个水稻育种群体( 和 )中,对未经测试的环境(年份)中的水稻产量、碾米品质性状和株高进行预测。我们还试图通过与 EC 相关的差异数量性状位点(QTL)表达来解释 G×E。研究结果表明,在预测未来年份时,同时使用分子标记和 EC 训练的 PLS 模型比反应规范模型具有更高的预测准确性。我们还检测到了与湿度和太阳辐射条件相关的碾米品质 QTL 的差异表达,为了解影响亚热带和温带水稻种植区碾米品质的主要环境因素提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af9d/6505146/abc684accffc/1519f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验