Suppr超能文献

整合分子标记和环境协变量,解析亚热带地区种植的水稻(L.)基因型与环境互作。

Integrating Molecular Markers and Environmental Covariates To Interpret Genotype by Environment Interaction in Rice ( L.) Grown in Subtropical Areas.

机构信息

Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca NY 14853.

Department of Agronomy, University of Wisconsin - Madison WI 53706.

出版信息

G3 (Bethesda). 2019 May 7;9(5):1519-1531. doi: 10.1534/g3.119.400064.

Abstract

Understanding the genetic and environmental basis of genotype × environment interaction (G×E) is of fundamental importance in plant breeding. If we consider G×E in the context of genotype × year interactions (G×Y), predicting which lines will have stable and superior performance across years is an important challenge for breeders. A better understanding of the factors that contribute to the overall grain yield and quality of rice ( L.) will lay the foundation for developing new breeding and selection strategies for combining high quality, with high yield. In this study, we used molecular marker data and environmental covariates (EC) simultaneously to predict rice yield, milling quality traits and plant height in untested environments (years), using both reaction norm models and partial least squares (PLS), in two rice breeding populations ( and ). We also sought to explain G×E by differential quantitative trait loci (QTL) expression in relation to EC. Our results showed that PLS models trained with both molecular markers and EC gave better prediction accuracies than reaction norm models when predicting future years. We also detected milling quality QTL that showed a differential expression conditional on humidity and solar radiation, providing insight for the main environmental factors affecting milling quality in subtropical and temperate rice growing areas.

摘要

了解基因型与环境互作(G×E)的遗传和环境基础,在植物育种中具有重要意义。如果我们将 G×E 置于基因型与年份互作(G×Y)的背景下考虑,预测哪些品系在多年间具有稳定和优异的表现,是育种者面临的一项重要挑战。更好地了解导致水稻( L.)整体产量和品质的因素,将为开发新的育种和选择策略奠定基础,以实现高产与优质的结合。在这项研究中,我们同时使用分子标记数据和环境协变量(EC),通过反应规范模型和偏最小二乘(PLS),在两个水稻育种群体( 和 )中,对未经测试的环境(年份)中的水稻产量、碾米品质性状和株高进行预测。我们还试图通过与 EC 相关的差异数量性状位点(QTL)表达来解释 G×E。研究结果表明,在预测未来年份时,同时使用分子标记和 EC 训练的 PLS 模型比反应规范模型具有更高的预测准确性。我们还检测到了与湿度和太阳辐射条件相关的碾米品质 QTL 的差异表达,为了解影响亚热带和温带水稻种植区碾米品质的主要环境因素提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af9d/6505146/abc684accffc/1519f1.jpg

相似文献

5
Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia.
Theor Appl Genet. 2003 Aug;107(4):679-90. doi: 10.1007/s00122-003-1269-1. Epub 2003 Jul 9.
6
Identifying natural genotypes of grain number per panicle in rice (Oryza sativa L.) by association mapping.
Genes Genomics. 2019 Mar;41(3):283-295. doi: 10.1007/s13258-018-0758-1. Epub 2018 Nov 19.
7
Multi-environment Genomic Selection in Rice Elite Breeding Lines.
Rice (N Y). 2023 Feb 8;16(1):7. doi: 10.1186/s12284-023-00623-6.
10
Mapping QTL main and interaction influences on milling quality in elite US rice germplasm.
Theor Appl Genet. 2011 Feb;122(2):291-309. doi: 10.1007/s00122-010-1445-z. Epub 2010 Sep 21.

引用本文的文献

2
4
Optimizing genomic prediction with transfer learning under a ridge regression framework.
Plant Genome. 2025 Sep;18(3):e70049. doi: 10.1002/tpg2.70049.
6
Enhancing winter wheat prediction with genomics, phenomics and environmental data.
BMC Genomics. 2024 May 31;25(1):544. doi: 10.1186/s12864-024-10438-4.
7
Feature engineering of environmental covariates improves plant genomic-enabled prediction.
Front Plant Sci. 2024 May 15;15:1349569. doi: 10.3389/fpls.2024.1349569. eCollection 2024.
9
MSXFGP: combining improved sparrow search algorithm with XGBoost for enhanced genomic prediction.
BMC Bioinformatics. 2023 Oct 11;24(1):384. doi: 10.1186/s12859-023-05514-7.
10
Genomic prediction and association mapping of maize grain yield in multi-environment trials based on reaction norm models.
Front Genet. 2023 Aug 31;14:1221751. doi: 10.3389/fgene.2023.1221751. eCollection 2023.

本文引用的文献

2
Resistance to Multiple Temperate and Tropical Stem and Sheath Diseases of Rice.
Plant Genome. 2018 Mar;11(1). doi: 10.3835/plantgenome2017.03.0029.
4
Software for Genome-Wide Association Studies in Autopolyploids and Its Application to Potato.
Plant Genome. 2016 Jul;9(2). doi: 10.3835/plantgenome2015.08.0073.
5
Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage.
Protoplasma. 2017 Mar;254(2):935-943. doi: 10.1007/s00709-016-1002-y. Epub 2016 Jul 22.
6
Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.
PLoS One. 2016 Jun 6;11(6):e0156744. doi: 10.1371/journal.pone.0156744. eCollection 2016.
7
Identification of stable QTLs causing chalk in rice grains in nine environments.
Theor Appl Genet. 2016 Jan;129(1):141-53. doi: 10.1007/s00122-015-2616-8.
9
Designing climate-resilient rice with ideal grain quality suited for high-temperature stress.
J Exp Bot. 2015 Apr;66(7):1737-48. doi: 10.1093/jxb/eru544. Epub 2015 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验