Suppr超能文献

从空间组学角度看癌症治疗耐药性。

Cancer therapy resistance from a spatial-omics perspective.

作者信息

Zhang Yinghao, Yang Cheng, Chen Xi, Wu Liang, Yuan Zhiyuan, Zhang Fan, Qian Bin-Zhi

机构信息

Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Center for Integrative Spatial-Omics Research, Fudan University, Fudan University Shanghai Cancer Center, Shanghai, China.

Shanghai Innovation Institute, Shanghai, China.

出版信息

Clin Transl Med. 2025 Jul;15(7):e70396. doi: 10.1002/ctm2.70396.

Abstract

Cancer therapy resistance (CTR) remains a significant challenge in oncology. Traditional methods like imaging, liquid biopsies and conventional omics analyses provide valuable insights, but lack the spatial resolution to fully characterise heterogeneity of tumour and the tumour microenvironment (TME). Recent advancements in spatial omics technologies offer unprecedented insights into the spatial organisation of tumours and TME. In this review, we summarise current methodologies for CTR research and highlight how spatial omics technologies and computational methods are revolutionising our understanding of CTR mechanisms. We also summarise recent studies leveraging spatial omics to uncover novel insights into CTR across various cancer types and therapies and discuss future opportunities.

摘要

癌症治疗耐药性(CTR)仍然是肿瘤学中的一个重大挑战。成像、液体活检和传统组学分析等传统方法提供了有价值的见解,但缺乏足够的空间分辨率来全面表征肿瘤和肿瘤微环境(TME)的异质性。空间组学技术的最新进展为肿瘤和TME的空间组织提供了前所未有的见解。在本综述中,我们总结了CTR研究的当前方法,并强调了空间组学技术和计算方法如何彻底改变我们对CTR机制的理解。我们还总结了最近利用空间组学揭示各种癌症类型和治疗方法中CTR新见解的研究,并讨论了未来的机遇。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验