Yang Pengzhan, Li Nian, Guo Wei, Zhang Zheng, Zhang Shudong, Zhang Jin Zhong, Wang Zhenyang
Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
University of Science and Technology of China, Hefei, 230026, China.
Small. 2025 Sep;21(36):e04690. doi: 10.1002/smll.202504690. Epub 2025 Jul 17.
To endure extreme conditions, silica fiber aerogels are expected to maintain ultralow thermal conductivity at high temperatures. However, the weak infrared extinction capacity of SiO fiber aerogels fails to effectively suppress thermal radiation, resulting in high thermal conductivity at high temperatures. Here, SiO-air-SiC fibers with high extinction shells, air interlayer, and amorphous core are fabricated by low-pressure carbothermal reduction. Owing to low pressure conditions that reduce Gibbs free energy of the reaction and increase the diffusion rate of the gas molecules, the reaction can occur in seconds. With the mitigation of thermal radiation by the incorporation of SiC shell with high extinction capacity and the weakening of gas-phase heat conduction in air interlayer generated by reaction below the mean free path of gas (70 nm), the aerogel shows ultralow thermal conductivity in a wide temperature range (the thermal conductivity at 1000 °C is 0.108 W m K). Meanwhile, the ultra-fast reaction rate ensures the amorphous structure of silica core, which can maintain the flexibility of the aerogel by triggering the shear band (up to 80% elastic compressive strain and bending recovery property). The combination of high-temperature thermal insulation and high flexibility shows good potential for thermal insulation applications under extreme conditions.
为了耐受极端条件,二氧化硅纤维气凝胶有望在高温下保持超低的热导率。然而,SiO纤维气凝胶较弱的红外消光能力无法有效抑制热辐射,导致其在高温下具有较高的热导率。在此,通过低压碳热还原法制备了具有高消光壳层、空气夹层和非晶态芯部的SiO-空气-SiC纤维。由于低压条件降低了反应的吉布斯自由能并提高了气体分子的扩散速率,该反应能在数秒内发生。通过引入具有高消光能力的SiC壳层减轻热辐射,并通过在气体平均自由程(70纳米)以下的反应削弱空气夹层中的气相热传导,该气凝胶在很宽的温度范围内都表现出超低的热导率(1000℃时的热导率为0.108W m K)。同时,超快的反应速率确保了二氧化硅芯部的非晶态结构,这可以通过触发剪切带来保持气凝胶的柔韧性(高达80%的弹性压缩应变和弯曲恢复性能)。高温隔热与高柔韧性的结合在极端条件下的隔热应用中显示出良好的潜力。