Pal Vaibhav, Gupta Deepak, Liu Suihong, Namli Ilayda, Rizvi Syed Hasan Askari, Yilmaz Yasar Ozer, Haugh Logan, Gerhard Ethan Michael, Ozbolat Ibrahim T
The Huck Institutes of Life Sciences, Penn State University, University Park, PA, 16802, USA.
Department of Chemistry, Penn State University, University Park, PA, 16802, USA.
Small. 2025 Jul 17:e02262. doi: 10.1002/smll.202502262.
Microgels offer unique advantages over bulk hydrogels due to their improved diffusion limits for oxygen and nutrients. Particularly, stimuli-responsive microgels with inherently bioactive and self-supporting properties emerge as highly promising biomaterials. This study unveils the development of interparticle-crosslinked, self-supporting, ion-responsive microgels tailored for 3D and 4D (bio)printing applications. A novel strategy is proposed to develop microgels that enabled interparticle crosslinking, eliminating the need for filler hydrogels and preserving essential microscale void spaces to support cell migration and vascularization. Additionally, these microgels possessed unique, ion-responsive shrinking behavior primarily by the Hofmeister effect, reversible upon the removal of the stimulus. Fabricated microgel-based constructs supported angiogenesis with tunable vessel size based-on interstitial void spaces while demonstrating excellent shear-thinning, self-healing properties and high print fidelity. Various bioprinting techniques are employed and validated using these microgels, including extrusion-based, embedded, intraembedded, and aspiration-assisted bioprinting, facilitating the biofabrication of scalable constructs. Multi-material 4D printing is achieved by combining ion-responsive microgels with non-responsive microgels, enabling programmable shape transformations upon exposure to ionic solutions. Utilizing 4D printing, complex, dynamic structures are generated such as coiling filaments, grippers, and folding sheets, providing a foundation for the development of advanced tissue models and devices for regenerative medicine and soft-robotics, respectively.
与块状水凝胶相比,微凝胶具有独特的优势,因为它们对氧气和营养物质的扩散限制有所改善。特别是,具有固有生物活性和自支撑特性的刺激响应性微凝胶成为非常有前途的生物材料。本研究揭示了为3D和4D(生物)打印应用量身定制的粒子间交联、自支撑、离子响应性微凝胶的开发。提出了一种开发微凝胶的新策略,该策略能够实现粒子间交联,无需填充水凝胶,并保留基本的微尺度空隙空间以支持细胞迁移和血管生成。此外,这些微凝胶主要通过霍夫迈斯特效应具有独特的离子响应收缩行为,在去除刺激后可逆。基于微凝胶制造的构建体支持基于间隙空隙空间的血管生成,血管大小可调,同时表现出优异的剪切变稀、自愈特性和高打印保真度。使用这些微凝胶采用并验证了各种生物打印技术,包括基于挤出的、嵌入式、内嵌入式和抽吸辅助生物打印,促进了可扩展构建体的生物制造。通过将离子响应性微凝胶与非响应性微凝胶相结合实现了多材料4D打印,使其在暴露于离子溶液时能够进行可编程的形状转变。利用4D打印,可以生成复杂的动态结构,如卷曲细丝、夹具和折叠片材,分别为再生医学和软机器人学的先进组织模型和装置的开发奠定了基础。