Suppr超能文献

通过构建新型机器学习模型,仅基于常规血液检测特征来识别川崎病的风险。

Identifying the risk of Kawasaki disease based solely on routine blood test features through novel construction of machine learning models.

作者信息

Yang Tzu-Hsien, Huang Ying-Hsien, Lee Yuan-Han, Lai Jie-Nan, Chen Kuang-Den, Guo Mindy Ming-Huey, Pan Yan, Chen Chun-Yu, Wu Wei-Sheng, Kuo Ho-Chang

机构信息

Department of Biomedical Engineering, National Cheng Kung University, University Road, 701 Tainan, Taiwan.

Medical Device Innovation Center, National Cheng Kung University, University Road, 701 Tainan, Taiwan.

出版信息

Comput Struct Biotechnol J. 2025 Jun 25;27:2832-2842. doi: 10.1016/j.csbj.2025.06.037. eCollection 2025.

Abstract

Kawasaki disease (KD) is a leading cause of acquired coronary vasculitis in children and remains a critical diagnostic challenge among febrile pediatric patients. To support frontline pediatricians with a more objective diagnostic tool, we developed and implemented KDpredictor, a machine learning-based model for KD risk identification. KDpredictor leverages only the routine blood test features, including complete blood count with differential count, C-reactive protein, and alanine aminotransferase. It also takes the lead in using age-calibrated eosinophil, platelet, and hemoglobin results. Trained using the light gradient boosting machine algorithm on clinical data from 1,927 KD cases and 45,274 febrile controls, KDpredictor achieved strong performance metrics (auROC: 95.7%, auPRC: 72.4%, recall: 0.89) on a reserved test set, outperforming previous models by at least 3% in auROC and 39.3% in auPRC. Additional explainable AI analyses revealed that several top predictive features in KDpredictor are consistent with prior clinical findings. We also evaluated KDpredictor on three independent cohorts collected in East Asia (Taiwan and China) during the COVID-19 period. KDpredictor achieves recall values of 90.9%, 83.7%, and 91.7% on KD samples identified in three independent medical centers, respectively, indicating its applicability across independent clinical settings. In summary, KDpredictor demonstrates robust generalizability in KD risk identification across populations by using only standard blood samples independent of clinical symptoms. KDpredictor is freely available at https://cosbi.ee.ncku.edu.tw/KD_under7/.

摘要

川崎病(KD)是儿童获得性冠状动脉血管炎的主要病因,在发热的儿科患者中仍然是一项关键的诊断挑战。为了为一线儿科医生提供一种更客观的诊断工具,我们开发并实施了KDpredictor,这是一种基于机器学习的KD风险识别模型。KDpredictor仅利用常规血液检测特征,包括全血细胞计数及分类计数、C反应蛋白和丙氨酸转氨酶。它还率先使用年龄校准的嗜酸性粒细胞、血小板和血红蛋白结果。KDpredictor使用轻梯度提升机算法在1927例KD病例和45274例发热对照的临床数据上进行训练,在一个保留测试集上取得了优异的性能指标(auROC:95.7%,auPRC:72.4%,召回率:0.89),在auROC方面比之前的模型至少高出3%,在auPRC方面高出39.3%。额外的可解释人工智能分析表明,KDpredictor中的几个顶级预测特征与先前的临床发现一致。我们还在COVID-19期间收集的东亚(台湾和中国大陆)三个独立队列中对KDpredictor进行了评估。KDpredictor在三个独立医疗中心识别出的KD样本上的召回率分别为90.9%、83.7%和91.7%,表明其在独立临床环境中的适用性。总之,KDpredictor通过仅使用独立于临床症状的标准血液样本,在跨人群的KD风险识别中表现出强大的通用性。KDpredictor可在https://cosbi.ee.ncku.edu.tw/KD_under7/免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9557/12268775/236473cf8955/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验