Li Wen, You Fengqun, Yang Jie, Gu Deao, Li Yuyang, Zhang Xuan, Miao Leiying, Sun Weibin
Department of Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
Shanghai Aiyou Biotechnology Center, Shanghai, China.
Mater Today Bio. 2025 Jun 18;33:101970. doi: 10.1016/j.mtbio.2025.101970. eCollection 2025 Aug.
Owing to high rates of antibiotic resistance, the elimination of periodontal plaque biofilms has become a significant clinical challenge. In this context, metal-organic framework (MOF)-based photodynamic therapy (PDT) has emerged as a novel antimicrobial treatment option. However, this therapeutic strategy suffers from drawbacks such as the insufficient generation of reactive oxygen species and the lack of targeted biofilm clearance, which greatly hinder its clinical application. Here, a multifunctional MOF-based nanocomposite (ICG@Uio-66-UBI) was developed by modifying MOFs (Uio-66-NH) with an antimicrobial peptide (UBI29-41) to enhance PDT efficiency. Our findings showed that the UBI29-41 targets EPS and selectively binds to lipopolysaccharide (LPS) on bacterial surfaces via electrostatic interactions, enabling precise delivery of ICG-generated ROS under 808-nm near-infrared irradiation, which disrupts bacterial membranes and inhibits biofilm formation. Subsequently, UBI29-41 blocks LPS-TLR4 binding, suppressing NF-κB signaling and reducing pro-inflammatory cytokine production. Furthermore, the nanocomposite significantly downregulates the LuxS/AI-2 quorum sensing (QS) system, reducing AI-2 synthesis and virulence gene expression, thereby inhibiting biofilm formation. studies confirmed the platform's efficacy in inhibiting biofilm formation and preventing collagen degradation in gingival tissue. By synergistically combining targeted antimicrobial action, anti-inflammatory effects, and QS modulation, ICG@Uio-66-UBI represents a breakthrough in precision periodontal therapy, offering a potent solution for biofilm-associated infections.
由于抗生素耐药率高,消除牙周菌斑生物膜已成为一项重大的临床挑战。在此背景下,基于金属有机框架(MOF)的光动力疗法(PDT)已成为一种新型抗菌治疗选择。然而,这种治疗策略存在诸如活性氧生成不足和缺乏靶向生物膜清除等缺点,这极大地阻碍了其临床应用。在此,通过用抗菌肽(UBI29 - 41)修饰MOF(Uio - 66 - NH)开发了一种多功能基于MOF的纳米复合材料(ICG@Uio - 66 - UBI),以提高PDT效率。我们的研究结果表明,UBI29 - 41靶向胞外聚合物(EPS),并通过静电相互作用选择性地结合细菌表面的脂多糖(LPS),从而在808纳米近红外照射下实现ICG产生的活性氧的精确递送,这会破坏细菌膜并抑制生物膜形成。随后,UBI29 - 41阻断LPS - TLR4结合,抑制NF - κB信号传导并减少促炎细胞因子的产生。此外,该纳米复合材料显著下调LuxS/AI - 2群体感应(QS)系统,减少AI - 2合成和毒力基因表达,从而抑制生物膜形成。研究证实了该平台在抑制生物膜形成和预防牙龈组织中胶原蛋白降解方面的功效。通过协同结合靶向抗菌作用、抗炎作用和QS调节,ICG@Uio - 66 - UBI代表了精准牙周治疗的一项突破,为生物膜相关感染提供了一种有效的解决方案。